On primes 𝑝 with 𝜎(𝑝^{𝛼})=𝑚²

Type: Article

Publication Date: 1987-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1987-0911021-8

Abstract

A. Takaku proved that for odd <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha greater-than-or-slanted-equals 3 comma sigma left-parenthesis p Superscript alpha Baseline right-parenthesis equals m squared comma p"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mi>σ<!-- σ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>m</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha \geqslant 3,\sigma ({p^\alpha }) = {m^2},p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> being a prime, implies that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p greater-than 2 Superscript 2 Super Superscript alpha plus 1"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>α<!-- α --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">p &gt; {2^{{2^{\alpha + 1}}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this paper we extend this result to include almost all even integers <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the prime factors of (²ⁿ_{𝑛}) 1975 Péter L. Erdős
R. L. Graham
Imre Z. Ruzsa
E. G. Straus
+ PDF Chat Some prime numbers of the forms 2𝐴3ⁿ+1 and 2𝐴3ⁿ-1 1972 Hywel C Williams
C. R. Zarnke
+ PDF Chat Primes of the form 𝑛!±1 and 2⋅3⋅5⋯𝑝±1 1982 Joe Buhler
Richard E. Crandall
M. A. Penk
+ PDF Chat Some primes of the form (𝑎ⁿ-1)/(𝑎-1) 1979 Hywel C Williams
E. Seah
+ PDF Chat Primes of the form 𝑝=1+𝑚²+𝑛² in short intervals 1998 Jie Wu
+ PDF Chat Primes differing by a fixed integer 1981 W. G. Leavitt
Albert A. Mullin
+ PDF Chat New primes of the form 𝑘⋅2ⁿ+1 1979 Robert Baillie
+ PDF Chat Some very large primes of the form 𝑘⋅2^{𝑚}+1 1980 Gordon V. Cormack
Hywel C Williams
+ PDF Chat On the congruence 2ⁿ⁻²≡1(𝑚𝑜𝑑𝑛) 1984 A. Rotkiewicz
+ PDF Chat Primes at a glance 1987 R. Kent Guy
C. B. Lacampagne
J. L. Selfridge
+ PDF Chat Some new primes of the form 𝑘⋅2ⁿ+1 1977 G. Matthew
Hywel C Williams
+ PDF Chat On ℎ𝑜𝑚dim𝑀𝑈_{*}(𝑋×𝑌) 1976 Duane O’Neill
+ PDF Chat Largest known twin primes and Sophie Germain primes 1999 Karl‐Heinz Indlekofer
Antal A. Járai
+ A note on non-ordinary primes 2016 Seokho Jin
Wenjun Ma
Ken Ono
+ PDF Chat On the lcm of the differences of eight primes 1989 François Morain
+ PDF Chat Largest known twin primes 1990 B. K. Parady
Joel F. Smith
Sergio E. Zarantonello
+ PDF Chat Product of difference sets of the set of primes 2023 Sayan Goswami
+ PDF Chat On 𝑘-free integers with small prime factors 1975 D. G. Hazlewood
+ On integers of the form 𝑘2ⁿ+1 2000 Yong-Gao Chen
+ On the numbers 𝑛 relatively prime to Ω(𝑛)-𝜔(𝑛) 2022 Yuchen Ding

Works That Cite This (0)

Action Title Year Authors