The weak dimensions of Gaussian rings

Type: Article

Publication Date: 2005-03-31

Citations: 39

DOI: https://doi.org/10.1090/s0002-9939-05-08093-7

Abstract

We provide necessary and sufficient conditions for a Gaussian ring $R$ to be semihereditary, or more generally, of $w.dimR\leq 1$. Investigating the weak global dimension of a Gaussian coherent ring $R$, we show that the only values $w.dimR$ may take are $0,1$ and $\infty$; but that $fP.dimR$ is always at most one. In particular, we conclude that a Gaussian coherent ring $R$ is either Von Neumann regular, or semihereditary, or non-regular of $w.dimR=\infty$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On the Coherence and Weak Dimension of the Rings R〈x 〉 and R(x) 1989 Sarah Glaz
+ Coherent rings of finite weak global dimension 1982 Marsha Finkel Jones
Mark L. Teply
+ Coherent Rings with Finite Weak Global Dimension 2024 Fanggui Wang
Hwankoo Kim
+ On the Coherent Rings with Weak Dimension ≤ 1 1992 Kwan Seog Seo
+ Maximally-fine rings 2023 Pace P. Nielsen
Yiqiang Zhou
+ The weak global dimension of Gaussian rings 2013 Eman Alhassan
+ Right Gaussian rings and related topics 2010 Michał Ziembowski
+ Weak Global Dimension of Prüfer-Like Rings 2014 Khalid Adarbeh
S. Kabbaj
+ Weakly Standard Rings 1957 R. L. San Soucie
+ On a Conjecture on the weak global dimension of Gaussian rings 2011 Гурам Донадзе
Viji Z. Thomas
+ ON A CONJECTURE ON THE WEAK GLOBAL DIMENSION OF GAUSSIAN RINGS 2011 Гурам Донадзе
Viji Z. Thomas
+ Von Neumann regular rings 1979 K. R. Goodearl
+ NR-Clean Rings 2016 Hani A. Khashan
+ Tight Rings. 1881
+ PDF Chat On<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-flat modules and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-Von Neumann regular rings 2006 Najib Mahdou
+ PDF Chat ON n-SEMIHEREDITARY AND n-COHERENT RINGS 2007 Xiaoxiang Zhang
Jianlong Chen
+ A Survey of Strongly Clean Rings 2008 Xiande Yang
+ On the weak dimension of coherent group rings 1987 Sarah Glaz
+ Strongly nil regular clean rings 2021 Zubaida M. Ibraheem
Raghad I. Zidan
+ Weakly clean WUU rings 2017 Peter Danchev