Spectral properties of parabolic layer potentials and transmission boundary problems in nonsmooth domains

Type: Article

Publication Date: 2003-10-01

Citations: 9

DOI: https://doi.org/10.1215/ijm/1258138108

Abstract

We study the invertibility of $\lambda I+K$ in $L^p(\partial\Omega\times\mathbf{R})$, for $p$ near $2$ and $\lambda\in\mathbf{R}$, $|\lambda|\geq\sfrac12$, where $K$ is the caloric double layer potential operator and $\Omega$ is a Lipschitz domain. Applications to transmission boundary value problems are also presented.

Locations

  • Illinois Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Spectral properties of the layer potentials associated with elasticity equations and transmission problems on Lipschitz domains 2006 Tong Keun Chang
Hi Jun Choe
+ PDF Chat Spectral properties of the layer potentials on Lipschitz domains 2008 Tongkeun Chang
Kijung Lee
+ Transmission problems and spectral theory for singular integral operators on Lipschitz domains 2004 Luis Escauriaza
Marius Mitrea
+ PDF Chat Single and Double Layer Potentials on Domains with Conical Points I: Straight Cones 2012 Yu Qiao
Victor Nistor
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ The L^p Boundary Value Problems on Lipschitz Domains 2006 Zhongwei Shen
+ Regularizing properties of the double layer heat potential and shape analysis of a periodic problem 2018 Paolo Luzzini
+ The double layer potential operator over polyhedral domains i: solvability in weighted sobolev spaces 1992 Johannes Elschner
+ Sharp Invertibility Results for Layer Potentials in 2D 2002 Dorina Mitrea
+ Sharp norm estimates of layer potentials and operators at high frequency 2015 Xiaolong Han
Melissa Tacy
+ Strongly Elliptic Second Order Systems with Spectral Parameter in Transmission Conditions on a Nonclosed Surface 2006 M. S. Agranovich
+ Fredholmness and Invertibility of Layer Potentials on Compact Boundaries 2023 Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ PDF Chat The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points 2017 Johan Helsing
Karl‐Mikael Perfekt
+ $L^2$ Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström
+ $L^2$ Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström