A Canonical Bundle Formula

Type: Article

Publication Date: 2000-09-01

Citations: 158

DOI: https://doi.org/10.4310/jdg/1090347529

Abstract

A higher dimensional analogue of Kodaira's canonical bundle formula is obtained. As applications, we prove that the log-canonical ring of a klt pair with κ ≤ 3 is finitely generated, and that there exists an effectively computable natural number M such that |MKX| induces the Iitaka fibering for every algebraic threefold X with Kodaira dimension κ = 1.

Locations

  • Journal of Differential Geometry - View - PDF

Similar Works

Action Title Year Authors
+ An Equivariant Tamagawa Number Formula for t-Modules and Applications 2022 Nathan Green
Cristian D. Popescu
+ Algebraic K-theory of group rings and the cyclotomic trace map 2016 Wolfgang Lück
Holger Reich
John Rognes
Marco Varisco
+ PDF Chat Big Cohen–Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic 2018 Raymond C. Heitmann
Linquan Ma
+ Clasificación de planos torcidos graduados 2023 Ricardo Bances
+ PDF Chat Representations of thread quivers 2013 Carl Fredrik Berg
Adam-Christiaan van Roosmalen
+ On congruent isomorphisms for tori 2024 Anne‐Marie Aubert
Sandeep Varma
+ PDF Chat On the Tambara Affine Line 2024 Dave Chan
David Mehrle
J. D. Quigley
Ben Spitz
Danika Van Niel
+ The plectic conjecture over function fields 2021 Siyan Daniel Li-Huerta
+ Fukaya categories in Koszul duality theory 2017 Satoshi Sugiyama
+ PDF Chat Torus rational fibrations 1999 Vicente Muñoz
+ PDF Chat Higher Algebraic K-Theory: an overview 1992 Emilio Lluis-Puebla
Jean-Louis Loday
Henri Gillet
Christophe Soulé
Victor Snaith
+ Bivariant K-theory with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi></mml:math>-coefficients and rho classes of unitary representations 2015 Paolo Antonini
Sara Azzali
Georges Skandalis
+ Towards a theta correspondence in families for type II dual pairs 2023 Gilbert Moss
Justin Trias
+ Congruence modules and the Wiles-Lenstra-Diamond numerical criterion in higher codimensions 2022 Srikanth B. Iyengar
Chandrashekhar Khare
Jeffrey Manning
+ Level-Rank Dualities from $Φ$-Harish-Chandra Series and Affine Springer Fibers 2023 Minh-Tâm Quang Trinh
Ting Xue
+ K-Theory 2017 Gene Abrams
Pere Ara
Mercedes Siles Molina
+ Higher algebraic $K$-theory of finitely generated torsion modules over principal ideal domains 2007 Satoshi Mochizuki
+ K-Theory 1978 Max Karoubi
+ Algebraic K-theory 1990 V. Srinivas
+ K-theory of toric varieties revisited 2012 Joseph Gubeladze