Local dp-rank and VC-density over indiscernible sequences

Type: Article
Publication Date: 2011-08-12
Citations: 6

Abstract

In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.

Locations

  • arXiv (Cornell University)
In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density … In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.
In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density … In this paper, we study VC-density over indiscernible sequences (denoted VC_ind-density). We answer an open question in [1], showing that VC_ind-density is always integer valued. We also show that VC_ind-density and dp-rank coincide in the natural way.
In this paper, we study Vapnik‐Chervonenkis density (VC‐density) over indiscernible sequences (denoted VC ind ‐density). We answer an open question in [1], showing that VC ind ‐density is always integer … In this paper, we study Vapnik‐Chervonenkis density (VC‐density) over indiscernible sequences (denoted VC ind ‐density). We answer an open question in [1], showing that VC ind ‐density is always integer valued. We also show that VC ind ‐density and dp‐rank coincide in the natural way.
We recast the problem of calculating Vapnik-Chervonenkis (VC) density into one of counting types, and thereby calculate bounds (often optimal) on the VC density for some weakly o-minimal, weakly quasi-o-minimal, … We recast the problem of calculating Vapnik-Chervonenkis (VC) density into one of counting types, and thereby calculate bounds (often optimal) on the VC density for some weakly o-minimal, weakly quasi-o-minimal, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-minimal theories.
The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank cannot be reduced to the study of its … The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank cannot be reduced to the study of its dp-minimal types, and we discuss the possible relations between dp-rank and VC-density.
This paper presents some finite combinatorics of set systems with applications to model theory, particularly the study of dependent theories. There are two main results. First, we give a way … This paper presents some finite combinatorics of set systems with applications to model theory, particularly the study of dependent theories. There are two main results. First, we give a way of producing lower bounds on VCind-density and use it to compute the exact VCind-density of polynomial inequalities and a variety of geometric set families. The main technical tool used is the notion of a maximum set system, which we juxtapose to indiscernibles. In the second part of the paper we give a maximum set system analogue to Shelah’s characterization of stability using indiscernible sequences.
class in n parameters. class in n parameters.
The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank can not be reduced to the study of … The main result of this article is sub-additivity of the dp-rank. We also show that the study of theories of finite dp-rank can not be reduced to the study of its dp-minimal types, and discuss the possible relations between dp-rank and VC-density.