Dicussion on the Meeting on ‘Statistical Approaches to Inverse Problems’

Type: Article

Publication Date: 2004-07-15

Citations: 15

DOI: https://doi.org/10.1111/j.1467-9868.2004.2060d.x

Abstract

Johnstone, Kerkyacharian, Picard and Raimondo Johnstone, Kerkyacharian, Picard and Raimondo are interested in the inverse problem of estimating f where f has been convolved with g and then contaminated with white noise. This popular problem has been tackled by a wide variety of procedures and wavelet methods have recently generated considerable interest. Donoho’s (1995) seminal wavelet–vaguelette paper introduced the notion that wavelets would be a good choice for the representation of f since real life objects, such as images, are more likely to be efficiently represented using wavelets when compared with, for example, Fourier representations. Johnstone and his colleagues have moved the field on significantly. In particular, their procedure is more direct than wavelet–vaguelette or Abramovich and Silverman’s (1998) vaguelette–wavelet method; it can handle boxcar blur theoretically and practically, they have rates of convergence forp =2 (p defines the type of loss) and the paper innovates through use of the new maxiset approach. For me, the most appealing of these innovations is that of enabling the treatment of boxcar blur which is one of the most common types of inverse problem. However, is it really, really, the case that for rational a nothing can be done? Formula (4) compels us to say no, nothing can, but naively it still feels wrong. Formula (19) is the popular ‘signal-plus-noise’ model but here it is a little different from what normally appears in the literature because the quantities are complex-valued random variables. More specifically, the zl are zero-mean Gaussian variables which are complex valued and satisfy E.zlzk/= δlk. One question is why threshold the βk and not the yl directly? The covariance of the βk is given by cov.βk, βl/=n ∑ m ΨkmΨ l m

Locations

  • Journal of the Royal Statistical Society Series B (Statistical Methodology) - View - PDF

Similar Works

Action Title Year Authors
+ The Preface of the Session on Statistical Methods in Inverse Problems 2010 Tapio Helin
Hanna K. Pikkarainen
Theodore E. Simos
George Psihoyios
Ch. Tsitouras
+ M 514.01Introduction to Computational Inverse Problems: Mathematical and Statistical Methods 2013 Jonathan M. Bardsley
+ PDF Chat IPI special issue on 'mathematical/statistical approaches in data science' in the Inverse Problem and Imaging 2020 Weihong Guo
Yifei Lou
Jing Qin
Ming Yan
+ Inverse Problems and Regularization 2011 Haroldo Fraga de Campos Velho
+ WAVELET SHRINKAGE FOR CORRELATED DATA AND INVERSE PROBLEMS: ADAPTIVITY RESULTS 1999 Iain M. Johnstone
+ Distances entropiques et informationnelles en traitement de donnees 1997 Christian Heinrich
+ PDF Chat Mini-workshop: Statistical Methods for Inverse Problems 2007 Marc Hoffmann
Markus Reiß
+ Bayesian Inverse Problems with Heterogeneous Variance 2019 Natalia Bochkina
Jenovah Rodrigues
+ Inversion bayésienne myope et non-supervisée pour l'imagerie sur-résolue. Application à l'instrument SPIRE de l'observatoire spatial Herschel. 2009 François Orieux
+ PDF Chat Apports méthodologiques basés sur la parcimonie pour les problèmes inverses 2017 Aurélia Fraysse
+ Contribution au problème de déconvolution 1993 Noureddine Souilah
+ PDF Chat Information theory, Signal Analysis and Inverse Problem 2024 Dominique Gibert
Fernando Lopes
Vincent Courtillot
Jean-Baptiste Boulé
+ 4. Statistical Estimation Theory 2002 Curtis R. Vogel
+ A Statistical Perspective on Inverse and Inverse Regression Problems 2017 Debashis Chatterjee
Sourabh Bhattacharya
+ A Statistical Perspective on Inverse and Inverse Regression Problems 2017 Debashis Chatterjee
Sourabh Bhattacharya
+ Isotonic inverse estimation in statistical inverse problems 1999 Geurt Jongbloed
+ Performances et méthodes pour l'échantillonnage comprimé : Robustesse à la méconnaissance du dictionnaire et optimisation du noyau d'échantillonnage. 2016 Stéphanie Bernhardt
+ Statistical and Computational Inverse Problems 2006 Faming Liang
Jianhua Huang
+ Special topics course 593C Nonparametric Estimation for Inverse Problems Algorithms and Asymptotics 1998 Piet Groeneboom
+ 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012) 2012 Laure Blanc‐Féraud
Pierre-Yves Joubert

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat On the efficiency of adaptive MCMC algorithms 2006 Christophe Andrieu
Yves F. Atchadé
+ PDF Chat Multichannel deconvolution with long-range dependence: A minimax study 2013 Rida Benhaddou
Rafał Kulik
Marianna Pensky
Theofanis Sapatinas
+ Multichannel deconvolution with long range dependence: Upper bounds on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-risk <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>≤</mml:mo><mml:mi>p</mml:mi><mml:mo>&lt;</mml:mo><mml:mo>∞</mml… 2014 Rafał Kulik
Theofanis Sapatinas
Justin Wishart
+ PDF Chat Multichannel boxcar deconvolution with growing number of channels 2011 Marianna Pensky
Theofanis Sapatinas
+ Minimax convergence rates under the -risk in the functional deconvolution model 2009 Athanasia Petsa
Theofanis Sapatinas
+ Adaptive Markov Chain Monte Carlo Algorithms with Geophysical Applications 2004 J. Tamminen
+ Multichannel Deconvolution with Long-Range Dependence: A Minimax Study 2013 Rida Benhaddou
Rafał Kulik
Marianna Pensky
Theofanis Sapatinas
+ PDF Chat On the ergodicity properties of some adaptive MCMC algorithms 2006 Christophe Andrieu
Éric Moulines
+ Functional Wavelet Deconvolution in a Periodic Setting 2007 Marianna Pensky
Theofanis Sapatinas
+ PDF Chat On the efficiency of adaptive MCMC algorithms 2007 Christophe Andrieu
Yves F. Atchadé