Mordell-Weil Groups of Elliptic Curves Over Cyclotomic Fields

Type: Book-Chapter

Publication Date: 1982-01-01

Citations: 10

DOI: https://doi.org/10.1007/978-1-4899-6699-5_15

Locations

  • Progress in mathematics - View

Similar Works

Action Title Year Authors
+ FINITENESS OF $ E(\mathbf{Q})$ AND $ \textrm{Ø}(E,\mathbf{Q})$ FOR A SUBCLASS OF WEIL CURVES 1989 V. A. Kolyvagin
+ PDF Chat Mordell–Weil Groups and the Rank of Elliptic Curves over Large Fields 2006 Bo‐Hae Im
+ Torsion groups of Mordell curves over number fields of higher degree 2021 Tomislav Gužvić
Bidisha Roy
+ Mordell-Weil groups and the rank of elliptic curves over large fields 2004 Bo‐Hae Im
+ Mordell-Weil groups of elliptic curves over C(t) with pg=0 or 1 1982 David A. Cox
+ PDF Chat The Galois representation of type $E_8$ arising from certain Mordell-Weil groups 1989 Tetsuji Shioda
+ Mordell-Weil group as Galois modules 2023 Thomas Vavasour
Christian Wüthrich
+ PDF Chat Families of elliptic curves with trivial Mordell-Weil group 2000 Andrzej Dąbrowski
Małgorzata Wieczorek
+ PDF Chat Elliptic curves with a torsion point 1977 Toshihiro Hadano
+ The Mordell-Weil Group of Curves of Genus 2 1983 J. W. S. Cassels
+ ON THE MORDELL-WEIL AND SHAFAREVICH-TATE GROUPS FOR WEIL ELLIPTIC CURVES 1989 V. A. Kolyvagin
+ PDF Chat The behavior of the Mordell-Weil group of elliptic curves 1990 Armand Brumer
Francis McGuinness
+ Torsion subgroups of rational Mordell curves over some families of number fields 2022 Tomislav Gužvić
Bidisha Roy
+ Using Selmer Groups to compute Mordell-Weil Groups of Elliptic Curves 2018 Anika Behrens
+ Using Selmer Groups to compute Mordell-Weil Groups of Elliptic Curves 2018 Anika Behrens
+ Galois Representations in Mordell-Weil Groups of Elliptic Curves 2001 David E. Rohrlich
+ Proof of Mordell’s Finite Generation Theorem 1987 Dale Husemöller
+ On the Mordell-Weil Group and the Shafarevich-Tate Group of Modular Elliptic Curves 2010 Victor Alecsandrovich
V. A. Kolyvagin
+ On the Selmer groups and Mordell-Weil groups of elliptic curves $ y^{2} = x (x \pm p) (x \pm q) $ over imaginary quadratic number fields of class number one 2012 Xiumei Li
+ Mordell-Weil groups and Selmer groups of twin- prime elliptic curves 2002 Derong Qiu
Xianke Zhang