Counting all regular tetrahedra in {0,1,...,n}^3

Type: Preprint

Publication Date: 2009-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.0912.1062

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Counting all cubes in {0,1,...,n}^3 2010 Eugen J. Ionaşcu
Rodrigo A. Obando
+ Counting all regular octahedrons in {0,1,...,n}^3 2010 Eugen J. Ionaşcu
+ COUNTING ALL CUBES IN f0;1;:::;n g 3 2010 Eugen J. Ionaşcu
Rodrigo A. Obando
+ COUNTING ALL REGULAR OCTAHEDRONS IN f0;1;:::;n g 3 2010 Eugen J. Ionaşcu
+ A characterization of regular tetrahedra in Z^3 2007 Eugen J. Ionaşcu
+ Regular Octahedrons in {0, 1, K, n} 3 2012 Eugen J. Ionaşcu
+ Regular tetrahedra whose vertices have integer coordinates 2011 Eugen J. Ionaşcu
+ Regular octahedra in {0, 1, ..., n} 3 2012 E. I. Ionascu
+ A characterization of regular tetrahedra in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math> 2009 Eugen J. Ionaşcu
+ Counting all equilateral triangles in {0,1,2,...,n}^3 2007 Eugen J. Ionaşcu
+ Cubes in {0,1,...,n}3 2012 Eugen J. Ionaşcu
Rodrigo A. Obando
+ A Counting Formula for Primitive Tetrahedra in<i>Z</i><sup>3</sup> 1999 Mizan R. Khan
+ How many tetrahedra? 2002 Atsuhiro Nakamoto
Mamoru Watanabe
+ Tetrahedral Numbers as Sums of Square Numbers 1991 Steven C. Althoen
C. B. Lacampagne
+ A remarkable sequence related to $π$ and $\sqrt{2}$ 2017 Wieb Bosma
Michel Dekking
Wolfgang Steiner
+ A Counting Formula for Primitive Tetrahedra in Z 3 1999 Mizan R. Khan
+ Lattice Points inside a Triangle: 10600 1999 Franz Rothe
Robin Chapman
+ Efficient Calculation the Number of Partitions of the Set $\{1, 2, \ldots, 3n\}$ into Subsets $\{x, y, z\}$ Satisfying $x+y=z$ 2023 Christian Hercher
Frank Niedermeyer
+ Sequences from heptagonal pyramid corners of integer 2018 Nurul Hilda Syani Putri
Mashadi Mashadi
Sri Gemawati
+ PDF Chat Efficient calculation of the number of partitions of the set {1,2,…,3n} into subsets {x,y,z} satisfying x+y=z 2024 Christian Hercher
Frank Niedermeyer