On the $L^{r}$ Hodge theory in complete non compact riemannian manifolds

Type: Preprint

Publication Date: 2015-06-27

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1506.08295

Abstract

We study solutions for the Hodge laplace equation $\Delta u=\omega $ on $p$ forms with $\displaystyle L^{r}$ estimates for $\displaystyle r>1.$ Our main hypothesis is that $\Delta $ has a spectral gap in $\displaystyle L^{2}.$ We use this to get non classical $\displaystyle L^{r}$ Hodge decomposition theorems. An interesting feature is that to prove these decompositions we never use the boundedness of the Riesz transforms in $\displaystyle L^{s}.$ These results are based on a generalisation of the Raising Steps Method to complete non compact riemannian manifolds.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ The raising steps method. Applications to the $\displaystyle L^{r}$ Hodge theory in a compact riemannian manifold 2015 Éric Amar
+ Riesz transforms on non-compact manifolds 2014 Peng Chen
Jocelyn Magniez
El Maati Ouhabaz
+ PDF Chat On the $$L^{r}$$ Hodge theory in complete non compact Riemannian manifolds 2017 Éric Amar
+ $$L^p$$-Analysis of the Hodge–Dirac Operator Associated with Witten Laplacians on Complete Riemannian Manifolds 2017 Jan van Neerven
Rik Versendaal
+ $L^p$-Analysis of the Hodge--Dirac operator associated with Witten Laplacians on complete Riemannian manifolds 2017 Jan van Neerven
Rik Versendaal
+ $L^p$-Analysis of the Hodge--Dirac operator associated with Witten Laplacians on complete Riemannian manifolds 2017 Jan van Neerven
Rik Versendaal
+ The Riesz transform on a complete Riemannian manifold with Ricci curvature bounded from below 2016 Rik Versendaal
+ L p -estimates for the heat semigroup on differential forms, and related problems 2017 Jocelyn Magniez
El Maati Ouhabaz
+ L p -estimates for the heat semigroup on differential forms, and related problems 2017 Jocelyn Magniez
El Maati Ouhabaz
+ Riesz transforms on forms and $L^p$-Hodge decomposition on complete Riemannian manifolds 2010 Xiang‐Dong Li
+ The Hodge–de Rham Laplacian and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-boundedness of Riesz transforms on non-compact manifolds 2015 Peng Chen
Jocelyn Magniez
El Maati Ouhabaz
+ PDF Chat Riesz transforms of the Hodge-de Rham Laplacian on Riemannian manifolds 2015 Jocelyn Magniez
+ PDF Chat $$L^p$$-Estimates for the Heat Semigroup on Differential Forms, and Related Problems 2019 Jocelyn Magniez
El Maati Ouhabaz
+ Low energy resolvent for the Hodge Laplacian: Applications to Riesz transform, Sobolev estimates and analytic torsion 2013 Colin Guillarmou
David A. Sher
+ Low energy resolvent for the Hodge Laplacian: Applications to Riesz transform, Sobolev estimates and analytic torsion 2013 Colin Guillarmou
David A. Sher
+ PDF Chat Correction to: On the $$L^{r}$$ Hodge theory in complete non compact Riemannian manifolds 2019 Éric Amar
+ PDF Chat On L p -Resolvent Estimates and the Density of Eigenvalues for Compact Riemannian Manifolds 2014 Jean Bourgain
Peng Shao
Christopher D. Sogge
Xiaohua Yao
+ PDF Chat L p −BOUNDS FOR THE RIESZ TRANSFORMS ASSOCIATED WITH THE HODGE LAPLACIAN IN LIPSCHITZ SUBDOMAINS OF RIEMANNIAN MANIFOLDS 2011 Steve Hofmann
Marius Mitrea
Sylvie Monniaux
+ Hardy spaces of differential forms on Riemannian manifolds 2006 Pascal Auscher
Alan McIntosh
Emmanuel Russ
+ PDF Chat Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds 2006 Pascal Auscher
Alan McIntosh
Emmanuel Russ

Works That Cite This (1)

Action Title Year Authors
+ PDF Chat On estimates for the ∂¯ equation in Stein manifolds 2017 Éric Amar