Regularity and Algebras of Analytic Functions in Infinite Dimensions

Type: Article

Publication Date: 1996-01-01

Citations: 57

DOI: https://doi.org/10.1090/s0002-9947-96-01553-x

Abstract

A Banach space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is known to be Arens regular if every continuous linear mapping from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E prime"> <mml:semantics> <mml:msup> <mml:mi>E</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:annotation encoding="application/x-tex">E’</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is weakly compact. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an open subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript b Baseline left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_b(U)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the algebra of analytic functions on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are bounded on bounded subsets of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> lying at a positive distance from the boundary of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U period"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> We endow <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript b Baseline left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_b(U)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with the usual Fréchet topology. <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript b Baseline left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_b(U)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the set of continuous homomorphisms <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="phi colon upper H Subscript b Baseline left-parenthesis upper U right-parenthesis right-arrow double-struck upper C"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\phi :H_b(U) \to \mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We study the relation between the Arens regularity of the space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the structure of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M Subscript b Baseline left-parenthesis upper U right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>M</mml:mi> <mml:mi>b</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">M_b(U)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Analytic functions, ideals, and derivation ranges 1973 Robert E. Weber
+ PDF Chat Smooth extensions in infinite dimensional Banach spaces 1972 Peter Renz
+ Non-reflexivity of the derivation space from Banach algebras of analytic functions 2007 Ebrahim Samei
+ PDF Chat Approximating zeros of accretive operators 1975 Simeon Reich
+ PDF Chat Regularity of Banach algebras generated by analytic semigroups satisfying some growth conditions 1984 Jean Esterlé
Jośe E. Galé
+ PDF Chat Locally finite-dimensional sets of operators 1993 Leonya Livshits
+ PDF Chat Commutative ranges of analytic functions in Banach algebras 1985 Richard J. Fleming
James Jamison
+ PDF Chat Regularity for operator algebras on a Hilbert space 1993 John Froelich
+ PDF Chat Structure theorem for 𝐴-compact operators 1976 G. D. Lakhani
+ PDF Chat Extremal compressions of closed operators 1992 K.-H. Förster
K. Jahn
+ PDF Chat Operators on Banach spaces taking compact sets inside ranges of vector measures 1992 Cándido Piñeiro
+ The Riesz decomposition property for the space of regular operators 2000 Nicolae Dăneţ
+ PDF Chat 𝑀-ideals of compact operators are separably determined 1998 Eve Oja
+ Closed ideals of operators on and complemented subspaces of Banach spaces of functions with countable support 2016 William B. Johnson
Tomasz Kania
Gideon Schechtman
+ PDF Chat Banach spaces which are 𝑀-ideals in their biduals 1984 Peter Harmand
Åsvald Lima
+ Spectra of algebras of entire functions on Banach spaces 2006 Andriy Zagorodnyuk
+ PDF Chat Relations between Banach function algebras and their uniform closures 1990 Taher Ghasemi Honary
+ PDF Chat Analyticity of functions and subalgebras of 𝐿^{∞} containing 𝐻^{∞} 1978 Shuenn‐Yih Chang
John B. Garnett
+ Banach-Stone theorem for Banach lattice valued continuous functions 2007 Zafer Ercan
Süleyman Önal
+ Functional calculus and *-regularity of a class of Banach algebras 2005 Chi-Wai Leung
Chi–Keung Ng