Type: Article
Publication Date: 2015-10-01
Citations: 1
DOI: https://doi.org/10.1109/focs.2015.88
We show that the number of incidences between m distinct points and n distinct lines in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> is O(2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c√log m</sup> (m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2/5</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4/5</sup> + m) + m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/4</sup> + m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2/3</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/3</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/3</sup> + n), for a suitable absolute constant c, provided that no 2-plane contains more than s input lines, and no hyperplane or quadric contains more than q lines. The bound holds without the extra factor 2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c√log m</sup> when m ≤ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6/7</sup> or m ≥ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5/3</sup> . Except for this possible factor, the bound is tight in the worst case. The context of this work is incidence geometry, a topic that has been widely studied for more than three decades, with strong connections to a variety of topics, from range searching in computational geometry to the Kakeya problem in harmonic analysis and geometric measure theory. The area has picked up considerable momentum in the past seven years, following the seminal works of Guth and Katz [12, 13], where the later work solves the point-line incidence problem in three dimensions, using new tools and techniques from algebraic geometry. This work extends their result to four dimensions. In doing so, it had to overcome many new technical hurdles that arise from the higher-dimensional context, by developing and adapting more advanced tools from algebraic geometry.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Incidences Between Points and Lines on Two- and Three-Dimensional Varieties | 2017 |
Micha Sharir Noam Solomon |