Incidences between Points and Lines in R^4

Type: Article

Publication Date: 2015-10-01

Citations: 1

DOI: https://doi.org/10.1109/focs.2015.88

Download PDF

Abstract

We show that the number of incidences between m distinct points and n distinct lines in R <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> is O(2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c√log m</sup> (m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2/5</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4/5</sup> + m) + m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/2</sup> q <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/4</sup> + m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2/3</sup> n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/3</sup> s <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1/3</sup> + n), for a suitable absolute constant c, provided that no 2-plane contains more than s input lines, and no hyperplane or quadric contains more than q lines. The bound holds without the extra factor 2 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c√log m</sup> when m ≤ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6/7</sup> or m ≥ n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5/3</sup> . Except for this possible factor, the bound is tight in the worst case. The context of this work is incidence geometry, a topic that has been widely studied for more than three decades, with strong connections to a variety of topics, from range searching in computational geometry to the Kakeya problem in harmonic analysis and geometric measure theory. The area has picked up considerable momentum in the past seven years, following the seminal works of Guth and Katz [12, 13], where the later work solves the point-line incidence problem in three dimensions, using new tools and techniques from algebraic geometry. This work extends their result to four dimensions. In doing so, it had to overcome many new technical hurdles that arise from the higher-dimensional context, by developing and adapting more advanced tools from algebraic geometry.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Incidences Between Points and Lines in $${\mathbb {R}}^4$$ R 4 2016 Micha Sharir
Noam Solomon
+ PDF Chat Incidences between points and lines in R4 2014 Micha Sharir
Noam Solomon
+ Incidences between points and lines in R^4 2014 Micha Sharir
Noam Solomon
+ Incidences between points and lines in R^4 2014 Micha Sharir
Noam Solomon
+ Distinct distances between points and lines in 𝔽<sub> <i>q</i> </sub> <sup>2</sup> 2017 Thang Pham
Nguyễn Duy Phương
Nguyễn Minh Sáng
Claudiu Valculescu
Lê Anh Vinh
+ PDF Chat Incidences Between Points and Lines in Three Dimensions 2018 Micha Sharir
Noam Solomon
+ Incidences between Points and Lines in Three Dimensions 2015 Micha Sharir
Noam Solomon
+ Incidences between points and lines in three dimensions 2015 Micha Sharir
Noam Solomon
+ Line-Plane Incidence Bound in $\mathbb{R}^4$ 2023 Chao Cheng
+ Lines in R3 2022 Adam Sheffer
+ Points, Lines, and the Structure of ℝ $${\mathbb {R}}$$ 2018 Roman Kossak
+ Points, Lines, and the Structure of $${ \mathbb {R}}$$ 2024 Roman Kossak
+ PDF Chat Postulation of General Unions of Lines and Multiplicity Two Points in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msup><mml:mrow><mml:mi>ℙ</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> 2014 Edoardo Ballico
+ Incidences between points and lines on two- and three-dimensional varieties 2016 Micha Sharir
Noam Solomon
+ Incidences between points and lines on two- and three-dimensional varieties 2016 Micha Sharir
Noam Solomon
+ PDF Chat An incidence bound for lines in three dimensions 2016 Larry Guth
+ Point-line incidences in space 2002 Micha Sharir
Emo Welzl
+ Postulation of Disjoint Unions of Lines and Double Lines in $${\mathbb{P}^3}$$ 2011 Edoardo Ballico
+ PDF Chat Distinct distances between points and lines 2017 Micha Sharir
Shakhar Smorodinsky
Claudiu Valculescu
Frank de Zeeuw
+ Incidences between points and circles in three and higher dimensions 2002 Boris Aronov
Vladlen Koltun
Micha Sharir