On the discrepancy function in arbitrary dimension, close to L 1

Type: Article

Publication Date: 2008-06-01

Citations: 8

DOI: https://doi.org/10.1007/s10476-008-0203-9

Abstract

Let A N to be N points in the unit cube in dimension d, and consider the discrepancy function $$ D_N (\vec x): = \sharp \left( {\mathcal{A}_N \cap \left[ {\vec 0,\vec x} \right)} \right) - N\left| {\left[ {\vec 0,\vec x} \right)} \right| $$ Here, $$ \vec x = \left( {\vec x,...,x_d } \right),\left[ {0,\vec x} \right) = \prod\limits_{t = 1}^d {\left[ {0,x_t } \right),} $$ and $$ \left| {\left[ {0,\vec x} \right)} \right| $$ denotes the Lebesgue measure of the rectangle. We show that necessarily $$ \left\| {D_N } \right\|_{L^1 (log L)^{(d - 2)/2} } \gtrsim \left( {log N} \right)^{\left( {d - 1} \right)/2} . $$ In dimension d = 2, the ‘log L’ term has power zero, which corresponds to a Theorem due to [11]. The power on log L in dimension d ≥ 3 appears to be new, and supports a well-known conjecture on the L 1 norm of D N . Comments on the discrepancy function in Hardy space also support the conjecture.

Locations

  • arXiv (Cornell University) - PDF
  • Analysis Mathematica - View

Similar Works

Action Title Year Authors
+ On the Discrepancy Function in Arbitary Dimension, Close to L ^{1} 2006 Michael T. Lacey
+ PDF Chat The Supremum Norm of the Discrepancy Function: Recent Results and Connections 2013 Dmitriy Bilyk
Michael T. Lacey
+ An L^1 estimate for half-space discrepancy 2010 William Chen
Giancarlo Travaglini
+ An L^1 estimate for half-space discrepancy 2010 William Chen
Giancarlo Travaglini
+ PDF Chat On the exponent of discrepancies 2009 Grzegorz W. Wasilkowski
Henryk Woźniakowski
+ PDF Chat An L<sup>1</sup>estimate for half-space discrepancy 2010 William Chen
Giancarlo Travaglini
+ PDF Chat On the small ball inequality in three dimensions 2008 Dmitriy Bilyk
Michael T. Lacey
+ Roth’s Orthogonal Function Method in Discrepancy Theory and Some New Connections 2014 Dmitriy Bilyk
+ PDF Chat The exponent of discrepancy is at most 1.4778... 1997 Grzegorz W. Wasilkowski
Henryk Woźniakowski
+ Lower bounds for L 1 discrepancy 2013 Armen Vagharshakyan
+ On the Small Ball Inequality in All Dimensions 2007 Dmitry Bilyk
Michael T. Lacey
Armen Vagharshakyan
+ A DISCREPANCY THEOREM IN ℝd, d ≥ 3 2000 M. Götz
+ A Metric Discrepancy Estimate in Higher Dimensions Using L 2 Methods 2001 Hailiza Kamarul Haili
+ A new look at discrete discrepancy 2008 Kashinath Chatterjee
Hong Qin
+ On the Small Ball Inequality in Three Dimensions 2006 Michael T. Lacey
Dmitry Bilyk
+ PDF Chat On the discrepancy of (nα) 1984 Johannes Schoißengeier
+ Dichotomy results for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>norm of the discrepancy function 2013 Gagik Amirkhanyan
Dmitriy Bilyk
Michael T. Lacey
+ Improving a Constant in High-Dimensional Discrepancy Estimates 2018 Hendrik Pasing
Christian Weiß
+ Improving a Constant in High-Dimensional Discrepancy Estimates 2018 Hendrik Pasing
Christian Weiß
+ The discrepancy of (n?) n ?1 1993 Johannes Schoißengeier