Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS

Type: Book-Chapter

Publication Date: 2015-01-01

Citations: 75

DOI: https://doi.org/10.1007/978-3-319-20188-7_1

Locations

  • Applied and numerical harmonic analysis - View
  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF

Similar Works

Action Title Year Authors
+ Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ Almost Sure Well-Posedness of Fractional Schrödinger Equations with Hartree Nonlinearity 2018 Gyeongha Hwang
+ PDF Chat Almost sure scattering of the energy-critical NLS in $ d>6 $ 2023 Katie Marsden
+ Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb{R}^d$, $d=4$ and $5$ 2014 Oana Pocovnicu
+ Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb{R}^d$, $d=4$ and $5$ 2014 Oana Pocovnicu
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schr\"odinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ On the probabilistic well-posedness of the nonlinear Schr\"{o}dinger equations with non-algebraic nonlinearities 2017 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
+ PDF Chat On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities 2019 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
+ Almost sure scattering for the defocusing cubic nonlinear Schrödinger equation on $\mathbb{R}^3\times\mathbb{T}$ 2023 Luo Yongming
+ Almost Sure Scattering of the Energy Critical NLS in $d>6$ 2022 Katie Marsden
+ On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities 2017 Tadahiro Oh
Mamoru Okamoto
Oana Pocovnicu
+ PDF Chat Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on $\mathbb R^d$, $d=4$ and $5$ 2017 Oana Pocovnicu
+ PDF Chat Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2022 Martin Spitz
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2019 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ PDF Chat Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T) 2012 J. Colliander
Tadahiro Oh
+ Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2021 Martin Spitz
+ On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on $\mathbb{R}^3$ 2015 Jonas Lührmann
Dana Mendelson