Type: Article
Publication Date: 1998-02-01
Citations: 3
DOI: https://doi.org/10.4153/cjm-1998-006-0
Abstract Generalizing the notion of invariant subspaces on the 2-dimensional torus T 2 , we study the structure of A ϕ-invariant subspaces of L 2 ( T 2 ). A complete description is given of A ϕ -invariant subspaces that satisfy conditions similar to those studied by Mandrekar, Nakazi, and Takahashi.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | On the Berger-Coburn-Lebow Problem for Hardy Submodules | 2004 |
Michio Seto |
+ PDF Chat | Invariant Subspaces on 𝕋<sup><i>N</i></sup>and ℝ<sup><i>N</i></sup> | 2004 |
Michio Seto |
+ PDF Chat | Submodules of $L^2(\mathbf{R}^2)$ | 2005 |
Michio Seto |
Action | Title | Year | Authors |
---|---|---|---|
+ | Function theory in polydiscs | 1996 |
Walter Rudin |
+ | Banach Spaces of Analytic Functions | 2008 |
Rita A. Hibschweiler Thomas H. MacGregor |