Sharp global well-posedness for 1D NLS with derivatives

Type: Preprint

Publication Date: 2012-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.1201.0727

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat Global well-posedness and scattering for the defocusing septic one-dimensional NLS via new smoothing and almost Morawetz estimates 2024 Zachary Lee
Xueying Yu
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ PDF Chat Global Well-Posedness for Schrödinger Equations with Derivative 2001 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for the generalized derivative nonlinear Schrödinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ Global Well-posedness and soliton resolution for the Derivative Nonlinear Schrödinger equation 2017 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ PDF Chat Global well-posedness for the generalized derivative nonlinear Schr\"odinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ The Derivative Nonlinear Schr\"{o}dinger Equation: Global Well-Posedness and Soliton Resolution 2019 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ The Derivative Nonlinear Schrödinger Equation: Global Well-Posedness and Soliton Resolution 2019 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ Global Well-Posesedness for the Derivative Nonlinear Schrodinger Equation 2017 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ PDF Chat Global Well-Posedness of the Derivative Nonlinear Schroedinger Equations on T 2010 Yin Yin Su Win
+ Global well-posedness for the derivative non-linear Schrödinger equation 2018 R. M. Jenkins
Jiaqi Liu
Peter Perry
Catherine Sulem
+ Global Well-Posedness of 2D Non-Focusing Schrödinger Equations via Rigorous Modulation Approximation 2015 Nathan Totz
+ PDF Chat Local well-posedness for the derivative nonlinear Schrödinger equation with $ L^2 $-subcritical data 2021 Shaoming Guo
Xianfeng Ren
Baoxiang Wang
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global Well-Posedness of 2D Non-Focusing Schr\"odinger Equations via Rigorous Modulation Approximation 2015 Nathan Totz
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis

Works That Cite This (0)

Action Title Year Authors