Sharp bounds on the number of scattering poles in even-dimensional spaces

Type: Article

Publication Date: 1994-04-01

Citations: 66

DOI: https://doi.org/10.1215/s0012-7094-94-07401-2

Locations

  • Duke Mathematical Journal - View

Similar Works

Action Title Year Authors
+ PDF Chat Sharp bounds for the number of the scattering poles 1992 Georgi Vodev
+ PDF Chat Bounds on Scattering Poles in One Dimension 1999 Michael Hitrik
+ Sharp polynomial bounds on the number of scattering poles 1989 Maciej Zworski
+ Sharp polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in ? n 1991 Georgi Vodev
+ PDF Chat Sharp bounds on the number of scattering poles for perturbations of the Laplacian 1992 Georgi Vodev
+ Upper bounds on the number of scattering poles and the Lax–Phillips conjecture 1993 Vesselin Petkov
Georgi Vodev
+ Polynomial bounds on the number of scattering poles for metric perturbations of the Laplacian in R^n,n≧3, odd 1991 Georgi Vodev
+ Counting Scattering Poles 2020 Maciej Zworski
+ Lower bounds on the scattering amplitudes 1974 忠 内山
+ Sharp upper bounds on the number of the scattering poles 2004 Plamen Stefanov
+ Finite energy bounds on scattering amplitudes 1972 Brian D. Hahn
D.P. Hodgkinson
+ Lower bounds for scattering amplitudes 1972 M. Kolanowski
L. Łukaszuk
+ PDF Chat Polynomial bound on the distribution of poles in scattering by an obstacle 1984 Richard Melrose
+ The bounds of the odd dimensional Clifford-Fourier kernels 2021 Pan Lian
+ Rigorous upper bounds on integrals of the scattering amplitude 1984 Yu. S. Vernov
M. N. Mnatsakanova
M. S. Chubarov
+ Lower bound and zeros of the scattering amplitude 1980 Yu. S. Vernov
A. F. Kurbatov
+ Analyticity Properties and Bounds of the Scattering Amplitudes 1970 A. Martin
Franklin F. K. Cheung
+ p-Adic oscillatory integrals and Newton polyhedra 2004 Zúñiga Galindo
+ Scattering theory on manifolds with asymptotically polynomially growing ends 2012 真一郎 糸﨑
+ Sharp Estimates for the Imaginary Power Operators 2025 Tri Dung Tran
The Anh Bui
The Quan Bui
Xuan Thinh Duong
Ji Li