Type: Article
Publication Date: 2002-07-01
Citations: 37
DOI: https://doi.org/10.1215/ijm/1258130986
We establish upper bounds for multiplicative character sums and exponential sums over sets of integers that are described by various properties of their digits in a fixed base $g\ge 2$. Our main tools are the Weil and Vinogradov bounds for character sums and exponential sums. Our results can be applied to study the distribution of quadratic non-residues and primitive roots among these sets of integers.