On <i>p</i>-adic properties of the Eichler-Selberg trace formula II

Type: Article

Publication Date: 1976-12-01

Citations: 6

DOI: https://doi.org/10.1017/s0027763000017566

Abstract

Let be the space of cusp forms of weight k with respect to SL(2, Z) . Let p be a prime number and let T k (p) be the Hecke operator of degree p acting on as a linear endomorphism. Put H k (X) = det ( I – T k (p)X + p k-l X 2 I) , where I is the identity operator on . H k (X) is a polynomial with coefficients of rational integers, which is called the Hecke polynomial.

Locations

  • Nagoya Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On some <i>p</i>-adic properties of the eichler-selberg trace formula 1975 Masao Koike
+ PDF Chat Trace formula of certain Hecke operators for <i>Γ</i><sub>0</sub>(<i>q<sup>ν</sup></i>) 1979 Hiroshi Saitō
M. Yamauchi
+ PDF Chat Selberg trace formula for odd weight, II 1988 Shigeki Akiyama
+ On the Iwasawa invariants of BDP Selmer groups and BDP <i>p</i>-adic <i>L</i>-functions 2023 Antonio Lei
Katharina Müller
Jiacheng Xia
+ PDF Chat Existence of Hilbert Cusp Forms with Non-vanishing<i>L</i>-values 2015 Shingo Sugiyama
Masao Tsuzuki
+ PDF Chat On the trace formula for Hecke operators on congruence subgroups, II 2018 Alexandru A. Popa
+ On the p-adic Eichler-Shimura isomorphism for Λ-adic cusp forms. 1995 Masami Ohta
+ PDF Chat Reduction modulo <i>p</i> of cuspidal representations and weights in Serre's conjecture 2009 Michael M. Schein
+ PDF Chat Eisenstein Series and the Selberg Trace Formula. II 1987 H. Jacquet
D. Zagier
+ PDF Chat ON MOD<i>p</i>REPRESENTATIONS WHICH ARE DEFINED OVER<sub><i>p</i></sub>: II 2010 L. J. P. Kilford
Gabor Wiese
+ PDF Chat The Selberg trace formula for the Picard group SL(2, Z[i]) 1983 Janusz Szmidt
+ An Eichler–Zagier map for Jacobi cusp forms on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="script">H</mml:mi><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">C</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>g</mml:mi><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup></mml:math> 2018 M. Manickam
Karam Deo Shankhadhar
+ Some dimension formula and traces of Hecke operators for cusp forms of weight 1 2016
+ On Atkin and Swinnerton-Dyer Congruence Relations (2) 2005 A. O. L. Atkin
Wen-Ching Winnie Li
Линг Лонг
+ A Family of New-Way Integrals for the Standard ℒ-function of Cuspidal Representations of the Exceptional Group of Type<i>G</i><sub>2</sub> 2016 Avner Segal
+ p-Adic hypergeometric functions and the trace of Frobenius of elliptic curves 2024 Sulakashna
Rupam Barman
+ The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators 1987 勝 上田
+ PDF Chat The decomposition of the spaces of cusp forms of half-integral weight and trace formula of Hecke operators 1988 Masaru Ueda
+ On the Eichler-Selberg trace formula: an algebraic prof 2019 Flavio Perissinotto
+ Eisenstein Series and the Selberg Trace Formula I 1981 Don Zagier