A refinement of the Gauss-Lucas theorem

Type: Article

Publication Date: 1998-01-01

Citations: 28

DOI: https://doi.org/10.1090/s0002-9939-98-04381-0

Abstract

The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> lie in the convex hull <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Xi"> <mml:semantics> <mml:mi mathvariant="normal">Ξ</mml:mi> <mml:annotation encoding="application/x-tex">\Xi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the zeros of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is proved that, actually, a subdomain of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Xi"> <mml:semantics> <mml:mi mathvariant="normal">Ξ</mml:mi> <mml:annotation encoding="application/x-tex">\Xi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains the critical points of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF

Similar Works

Action Title Year Authors
+ A contraction of the Lucas polygon 2004 Branko Ćurgus
Vania Mascioni
+ PDF Chat The Gauss-Lucas theorem and Jensen polynomials 1983 Thomas C. Craven
George Csordás
+ Refinements of the Gauss-Lucas theorem using rational lemniscates and polar convexity 2021 Hristo S. Sendov
+ A Stability Version of the Gauss-Lucas Theorem and Applications 2018 Stefan Steinerberger
+ A Stability Version of the Gauss-Lucas Theorem and Applications 2018 Stefan Steinerberger
+ Lucas-Gauss Theorem 2007
+ Lucas-Gauss Theorem 2007
+ PDF Chat A STABILITY VERSION OF THE GAUSS–LUCAS THEOREM AND APPLICATIONS 2019 Stefan Steinerberger
+ PDF Chat A note on the Jacobian condition and two points at infinity 1991 James H. McKay
Stuart Sui Sheng Wang
+ 1049.The Gauss-Lucas Theorem 1932 Raymond Garver
+ PDF Chat An extension of the Lucas theorem 2001 J. Boulanger
Jean-Luc Chabert
+ PDF Chat Gauss’ lemma 1972 Hwa Tsang Tang
+ Strengthening the Gauss-Lucas theorem for polynomials with Zeros in the interior of the convex hull 2014 Andreas Rüdinger
+ Strengthening the Gauss-Lucas theorem for polynomials with Zeros in the interior of the convex hull 2014 Andreas Rüdinger
+ On the Gauss-Lucas'lemma in positive characteristic 1988 Umberto Bartocci
Maria Cristina Vipera
+ A Generalization of a Congruential Property of Lucas 1992 Richard J. McIntosh
+ On approximate Gauss-Lucas theorems 2017 Trevor Richards
+ PDF Chat Lucasian criteria for the primality of 𝑁=ℎ⋅2ⁿ-1 1969 Hans Riesel
+ The Gauss–Lucas theorem in an asymptotic sense 2016 Вилмос Тотик
+ A generalized Lucas sequence and permutation binomials 2005 Amir Akbary
Qiang Wang