A Primal–Dual Smooth Perceptron–von Neumann Algorithm

Type: Book-Chapter

Publication Date: 2013-01-01

Citations: 12

DOI: https://doi.org/10.1007/978-3-319-00200-2_17

Locations

  • Fields Institute communications - View

Similar Works

Action Title Year Authors
+ Nonlinear Programming Theory and Computation 1973 O. L. Mangasarian
+ A primal–dual prediction–correction algorithm for saddle point optimization 2016 Hongjin He
Jitamitra Desai
Kai Wang
+ A convex dual problem for the rational minimax approximation and Lawson’s iteration 2024 Lei‐Hong Zhang
Linyi Yang
Wei Hong Yang
Yanan Zhang
+ A smoothing and regularization Broyden-like method for nonlinear inequalities 2012 Haitao Che
Meixia Li
+ Smooth Optimization Problems. Saddle Point Conditions 2004
+ A sharp Lagrange multiplier theorem for nonlinear programs 2015 M. Ruiz Galán
+ Non‐Smooth Optimization 2000 R. Fletcher
+ The Newton-Kantorovich Theorem and Mathematical Programming 2007
+ PDF Chat Non-smooth Non-convex Bregman Minimization: Unification and New Algorithms 2018 Peter Ochs
Jalal Fadili
Thomas Brox
+ Lipschitz and Continuous Optimization 1996 Reiner Horst
Hoàng Tụy
+ Lipschitz and Continuous Optimization 1990 Reiner Horst
Hoàng Tụy
+ Lipschitz and Continuous Optimization 1993 Reiner Horst
Hoàng Tụy
+ Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications 2020 Franck Iutzeler
Jérôme Malick
+ Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications 2020 Franck Iutzeler
Jérôme Malick
+ PDF Chat Nonsmoothness in Machine Learning: Specific Structure, Proximal Identification, and Applications 2020 Franck Iutzeler
Jérôme Malick
+ Continuous Problems 1998 Ravi P. Agarwal
+ PDF Chat A fully stochastic primal-dual algorithm 2020 Pascal Bianchi
Walid Hachem
Adil Salim
+ Chapter 2. A Survey Of Continuous Minimax Algorithms 2009
+ PDF Chat Smoothing methods for convex inequalities and linear complementarity problems 1995 Chunhui Chen
O. L. Mangasarian
+ PDF Chat Convex Optimization: Algorithms and Complexity 2015 Sébastien Bubeck