Computational Comparison of Convex Underestimators for Use in a Branch-and-Bound Global Optimization Framework

Type: Book-Chapter

Publication Date: 2014-01-01

Citations: 3

DOI: https://doi.org/10.1007/978-1-4939-0808-0_11

Locations

  • Springer eBooks - View

Similar Works

Action Title Year Authors
+ Performance of convex underestimators in a branch-and-bound framework 2014 Yannis A. Guzman
M. M. Faruque Hasan
Christodoulos A. Floudas
+ Convex programming methods for global optimization 2005 John Hooker
+ Global Optimization: Tight Convex Underestimators 2012 Chrysanthos E. Gounaris
Christodoulos A. Floudas
+ Global Optimization: Tight Convex Underestimators 2008 Chrysanthos E. Gounaris
Christodoulos A. Floudas
+ On the use of convex underestimators in global optimization 2014 Anders Skjäl
+ A Novel Global Optimization Algorithm Using Difference of Convex Underestimator 2001 Tai-Yong Lee
+ PDF Chat Constructing Tight Quadratic Relaxations for Global Optimization: I. Outer-Approximating Twice-Differentiable Convex Functions 2024 William R. Strahl
Arvind U. Raghunathan
Nikolaos V. Sahinidis
Chrysanthos E. Gounaris
+ PDF Chat Constructing Tight Quadratic Relaxations for Global Optimization: II. Underestimating Difference-of-Convex (D.C.) Functions 2024 William R. Strahl
Arvind U. Raghunathan
Nikolaos V. Sahinidis
Chrysanthos E. Gounaris
+ Tighter underestimator for bivariate global optimization 2025 Mohand Ouanès
+ Algorithms for convex programming and global optimization 1999 劉 小軍
+ Branch-and-reduce algorithm for convex programs with additional multiplicative constraints 2008 Harold P. Benson
Erjiang Sun
+ Reduced complexity methods for large-scale convex optimization 2012 Anatoli Juditsky
Arkadi Nemirovski
+ Overview of Global Optimization Methods 2005 Ivo Nowak
+ Linear Relaxations in Global Optimization: Gradient-based Method and Ane Reformulation Technique. 2013 Jordan Ninin
+ Global Optimization, Computation, Approximation and Applications 2024 Pãnos M. Pardalos
Themistocles M. Rassias
+ Computational Methods for Linear-Quadratic Optimization 1999 Peter Benner
+ Reformulation and convex relaxation techniques for global optimization 2004 Leo Liberti
+ An effective branch-and-bound algorithm for convex quadratic integer programming 2011 Christoph Buchheim
Alberto Caprara
Andrea Lodi
+ Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing Optimal Optimization Methods 2022 Shuvomoy Das Gupta
Bart Van Parys
Ernest K. Ryu
+ Efficient and cheap bounds for (standard) quadratic optimization 2005 Immanuel M. Bomze
Marco Locatelli
Fabio Tardella