The integrals $$\mathfrak{E}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x\varepsilon ^3 )^{ - 1} e^{ - \varepsilon } d\varepsilon $$ and $$\mathfrak{F}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x\varepsilon ^3 )^{ - 2} e^{ - \varepsilon } d\varepsilon $$ and their tabulationand their tabulation

Type: Article

Publication Date: 1957-01-01

Citations: 3

DOI: https://doi.org/10.1007/bf02410432

Locations

  • Applied Scientific Research - View

Similar Works

Action Title Year Authors
+ The integrals $$\mathfrak{A}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x)^{ - 1} e^{ - 6} d\varepsilon $$ and $$\mathfrak{B}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon + x)^{ - 2} e^{ - 6} d\varepsilon $$ and their tabulationand their tabulation 1957 R. Dingle
Doreen Arndt
Sunanda Roy
+ The integrals $$\mathfrak{C}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon ^2 + x^2 )^{ - 1} e^{ - 6} d\varepsilon $$ and $$\mathfrak{D}_p (x) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (\varepsilon ^2 + x^2 )^{ - 2} e^{ - 6} d\varepsilon $$ and their tabulationand their tabulation 1957 R. Dingle
Doreen Arndt
Sunanda Roy
+ The integrals $$Ci_n \left( x \right) = \int\limits_1^\infty {u^{ - n} \cos ux du} $$ and $$Si_n \left( x \right) = \int\limits_1^\infty {u^{ - n} \sin ux du} $$ and their tabulationand their tabulation 1955 R. Dingle
+ The Fermi-Dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon $$ 1957 R. Dingle
+ Integrals Containing the Infinite Product $\prod_{n=0}^\infty\left[1+\left(\frac{x}{b+n}\right)^3\right]$ 2017 Martin Nicholson
+ The integrals $$Ci_n (x) = \int\limits_1^\infty {u^{ - n} } $$ cosux du and $$Si_n (x) = \int\limits_1^\infty {u^{ - n} } $$ sinux du and their tabulationsinux du and their tabulation 1955 R. Dingle
+ Die Berechnung des Integral $\int_{ - \infty}^{\infty} ( \prod_{k = 1}^{n} \frac{\sin (a_{k}x)}{a_{k}x} ) \cdot\cos(bx)dx$ 2012 Rolfdieter Frank
Harald Riede
+ The fermi-dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \mathop \smallint \limits_0^\infty \varepsilon ^p (e^{\varepsilon - \eta } + 1)^{ - 1} d\varepsilon $$ 1957 R. Dingle
+ Integrals containing the infinite product $\prod_{n=0}^\infty\Bigl[1+\bigl(\frac{x}{b+n}\bigr)^3\Bigr]$ 2017 Martin Nicholson
+ Integrals containing the infinite product $\prod_{n=0}^\infty\Bigl[1+\bigl(\frac{x}{b+n}\bigr)^3\Bigr]$ 2017 Martin Nicholson
+ Approximate computation of integrals for functions in $ W_p^\alpha \lbrack 0,1 \rbrack ^n$ 2000 Erlan Nursultanov
Nazerke Tleukhanova
+ PDF Chat Approximation by integrals of 𝑒^{-𝑥²} 2009 William Adams
+ PDF Chat Integrals involving products of $E$-functions and Appell's functions 1974 Abdelaziz M. Hamza
Fouad M. Ragab
+ The $\exp \left( x \right){\mathop{\rm erfc}\nolimits} \left( {\sqrt x } \right)$ and Related Functions 2008 Keith B. Oldham
Jan C. Myland
Jerome Spanier
+ Werte von $${e}^{x\pi}, {e}^{-x\pi}, \mathfrak{Sin} x\pi, \mathfrak{Cof} x\pi$$ für $${x} = \frac{7}{6}, \frac{13}{6}, \frac{19}{6}, \dotsm$$ 1930 Keiichi Hayashi
+ The Ilstow and Feynman integrals 1962 R. H. Cameron
+ Beta-function formulae and integrals involvingE-functions 1961 T. M. MacRobert
+ Operators $$N{f^ \cdot }\left( {\mathop {{\text{ }}x}\limits^ \cdot } \right){ = _{df}}\varphi \left( x \right) \cdot \mathop {{\text{ }}f}\limits^ \cdot \left( {\mathop {{\text{ }}x}\limits^ \cdot } \right)$$ for ordinary functions f 1966 Otton Martin Nikodým
+ The Exponential Integrals Ei(x) and Ein(x) 2008 Keith B. Oldham
Jan C. Myland
Jerome Spanier
+ О мультипликативном процессе Чанг-Диакониса-Грэма 2023 Ilya D. Shkredov

Works That Cite This (1)

Action Title Year Authors
+ Neue Methoden in der kinetischen Theorie verdünnter Gase 2007 K. Suchy