Multiple Imputation for Non-Random Missing Data in Longitudinal Studies of Health-Related Quality of Life

Type: Book-Chapter

Publication Date: 2002-01-01

Citations: 10

DOI: https://doi.org/10.1007/978-1-4757-3625-0_26

Locations

  • Springer eBooks - View

Similar Works

Action Title Year Authors
+ Analyzing Longitudinal Health-Related Quality of Life Data: Missing Data and Imputation Methods 2002 Dennis A. Revicki
+ Multiple Imputation of Missing Data in Longitudinal Electronic Health Records 2013 Irene Petersen
Catherine Welch
Jonathan Bartlett
Richard Morris
Kate Walters
Irwin Nazareth
Louise Marston
Ian R. White
James R. Carpenter
+ The impact of missing data on estimation of health-related quality of life outcomes: an analysis of a randomized longitudinal clinical trial 2011 Hongyan Du
Elizabeth A. Hahn
David Cella
+ Missing Data Imputation in Quality-of-Life Assessment 2006 Ting Hsiang Lin
+ Statistical analysis of longitudinal quality of life data with missing measurements 1992 A. H. Zwinderman
+ Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses 2002 Peter Faris
William A. Ghali
Rollin Brant
Colleen M. Norris
P. Diane Galbraith
Merril L. Knudtson
+ PDF Chat Multiple Imputation for Incomplete Data in Epidemiologic Studies 2018 O. Harel
E.M. Mitchell
N.J. Perkins
S.R. Cole
E.J. Tchetgen Tchetgen
Boxin Sun
E.F. Schisterman
+ Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood 2013 Mark A. Ferro
+ Impact of Missing Data on Health-Related Quality of Life Estimation 2023 Hongyan Du
Elizabeth A. Hahn
David Cella
+ Comparative approaches to handling missing data, with particular focus on multiple imputation for both cross-sectional and longitudinal models 2012 Ali Satty Ali. Hassan
+ On the use of multiple imputation in handling missing values in longitudinal studies 2004 Pui-Shan Chan
+ Multiple Imputation of Missing Covariates in Randomized Controlled Trials 2019 Gauri Kamat
+ PDF Chat What difference does multiple imputation make in longitudinal modeling of EQ-5D-5L data? Empirical analyses of simulated and observed missing data patterns 2021 Inka RĂśsel
Lina María Serna‐Higuita
Fatima Al Sayah
Maresa Buchholz
Ines Buchholz
Thomas Kohlmann
Peter Martus
You‐Shan Feng
+ Imputation of missing longitudinal data: a comparison of methods 2003 Josephine Engels
+ Applying multiple imputation to multi-item patient reported outcome measures: advantages and disadvantages of imputing at the item, sub-scale or score level 2016 Ines Rombach
Órlaith Burke
Crispin Jenkinson
Amy Gray
Oliver Rivero‐Arias
+ Reducing bias due to systematic attrition in longitudinal studies: The benefits of multiple imputation 2014 Jens B. Asendorpf
+ Multiple imputation methods for incomplete longitudinal ordinal data: a simulation study 2012 Anne‐Françoise Donneau
+ Multiple imputation of missing data in clinical trials 2001 Paul J. Zhang
+ Review and evaluation of imputation methods for multivariate longitudinal data with mixed‐type incomplete variables 2022 Yi Cao
Heather Allore
Brent Vander Wyk
Roee Gutman
+ Multiple imputation as a flexible tool for missing data handling in clinical research 2016 Craig K. Enders