Regularity and geometric properties of solutions of the Einstein-Vacuum equations

Type: Article

Publication Date: 2002-01-01

Citations: 0

DOI: https://doi.org/10.5802/jedp.613

Abstract

We review recent results concerning the study of rough solutions to the initial value problem for the Einstein vacuum equations expressed relative to wave coordinates. We develop new analytic methods based on Strichartz type inequalities which results in a gain of half a derivative relative to the classical result. Our methods blend paradifferential techniques with a geometric approach to the derivation of decay estimates. The latter allows us to take full advantage of the specific structure of the Einstein equations.

Locations

  • Journées Équations aux dérivées partielles - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Rough solutions of the Einstein-vacuum equations 2005 Sergiù Klainerman
Igor Rodnianski
+ Rough solution for the Einstein Vacuum equations 2001 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat Rough solutions of the Einstein vacuum equations 2002 Sergiù Klainerman
Igor Rodnianski
+ A sharpened Strichartz inequality for the wave equation 2018 Giuseppe Negro
+ PDF Chat A sharpened Strichartz inequality for the wave equation 2024 Giuseppe Negro
+ None 2005 Jacob Sterbenz
+ A Conjecture Regarding Optimal Strichartz Estimates for the Wave Equation 2017 Neal Bez
Chris Jeavons
Tohru Ozawa
Hiroki Saito
+ PDF Chat Rough Solutions of Einstein Vacuum Equations in CMCSH Gauge 2014 Qian Janice Wang
+ Rough Solutions of the Einstein Constraint Equations 2004 David Maxwell
+ $L^{p}$ and $\mathcal{H}^{p}_{FIO}$ regularity for wave equations with rough coefficients 2020 Andrew Hassell
Jan Rozendaal
+ Rough solutions of the Einstein constraint equations 2006 David Maxwell
+ PDF Chat Strichartz estimates on Kerr black hole backgrounds 2011 Mihai Tohaneanu
+ Peeling-off behaviour of the wave equation on the Vaidya spacetime 2022 Armand Coudray
+ PDF Chat Dispersive effects and long-time asymptotics for wave equations in exterior domains 2018 David Lafontaine
+ Peeling-off behavior of wave equation in the Vaidya spacetime 2023 Armand Coudray
+ Strichartz estimates and local existence for the gravity–capillary waves with non-Lipschitz initial velocity 2016 Thibault de Poyferré
Huy Q. Nguyen
+ $L^{p}$ and $\mathcal{H}^{p}_{FIO}$ regularity for wave equations with rough coefficients, Part I 2020 Andrew Hassell
Jan Rozendaal
+ Rough solutions of Einstein vacuum equations in CMCSH gauge 2012 Qian Wang
+ Strichartz estimates and local existence for the capillary water waves with non-Lipschitz initial velocity 2015 Thibault de Poyferré
Quang H. Nguyen
+ Strichartz estimates and local existence for the capillary water waves with non-Lipschitz initial velocity 2015 Thibault de Poyferré
Quang Huy Nguyen

Works That Cite This (0)

Action Title Year Authors