An Initial Value Approach to the Inverse Helmholtz Problem at Fixed Frequency

Type: Book-Chapter

Publication Date: 1997-01-01

Citations: 10

DOI: https://doi.org/10.1007/978-3-7091-6521-8_11

Similar Works

Action Title Year Authors
+ An inverse problem for the Helmholtz equation 1993 Oleksandr Nakonechnyi
Kh. M. Meredov
+ Inverse Problem for a Nonlinear Helmholtz Equation 2003 Emmanuel Jalade
+ An inverse scattering problem for the Helmholtz equation 1984 А. Г. Кюркчан
+ An inverse transmission problem for the Helmholtz equation 1987
+ Inverse scattering problem for the Helmholtz equation 1984 A. G. Kyurkchan
+ An inverse problem for Helmholtz's equation III 1989 А. Г. Рамм
+ A Fixed-Point Iteration Method for High Frequency Helmholtz Equations 2022 Songting Luo
Qing Liu
+ Numerical Estimation of the Inverse Eigenvalue Problem for a Weighted Helmholtz Equation 2023 Zhengfang Zhang
Xiangjing Gao
Xiaoliang Cheng
+ Stability of the inverse problem for the Helmholtz equation 1994 Gleb Dyatlov
+ An inverse problem for the helmholtz equation in a domain with unknown boundary 1984 А. С. Барашков
+ PDF Chat Inverse Wave-Number-Dependent Source Problems for the Helmholtz Equation 2024 Hongxia Guo
Guanghui Hu
+ PDF Chat An adaptive C0IPG method for the Helmholtz transmission eigenvalue problem 2018 Hao Li
Yidu Yang
+ A direct numerical solution to a one-dimensional helmholtz equation 1969 James J. O’Brien
+ Cauchy problem for the Helmholtz equation 2003 Sh. Yarmukhamedov
I. Yarmukhamedov
+ PDF Chat Inverse Scattering for the 1-D Helmholtz Equation 2015 Ingrid Beltiţă
Renata Bunoiu
+ A Computational Method for Inverse Helmholtz Problem Without Linearization 2023 M. Tadi
+ Numerical solution of the inverse source problem for the Helmholtz equation with multiple frequency data 2011 Gang Bao
Junshan Lin
Faouzi Triki
+ Polynomial approximation of an inverse Cauchy problem for Helmholtz type equations 2022 Fatima Aboud
Ibtihal Th. Jameel
Athraa F. Hasan
Baydaa Kh. Mostafa
Abdeljalil Nachaoui
+ An inverse scattering method for a 1-D dissipative Helmholtz equation 1999 Jeffrey O. Powell
+ A numerical method for inverse Helmholtz problem based on approximate inverse of a matrix 2023 M. Tadi