Engineering Electrical and Electronic Engineering

Wireless Energy Harvesting and Information Transfer

Description

This cluster of papers focuses on the research and development of wireless energy harvesting technologies, including RF energy harvesting, wireless power transfer, and energy management in sensor networks. It also explores topics such as MIMO broadcasting, RFID technology, and ambient backscatter for efficient energy utilization and information transfer in wireless communication systems.

Keywords

Wireless Energy Harvesting; Information Transfer; RF Energy Harvesting; Wireless Power Transfer; Energy Management; Sensor Networks; MIMO Broadcasting; RFID Technology; Ambient Backscatter; Energy Efficiency

We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel … We consider the use of energy harvesters, in place of conventional batteries with fixed energy storage, for point-to-point wireless communications. In addition to the challenge of transmitting in a channel with time selective fading, energy harvesters provide a perpetual but unreliable energy source. In this paper, we consider the problem of energy allocation over a finite horizon, taking into account channel conditions and energy sources that are time varying, so as to maximize the throughput. Two types of side information (SI) on the channel conditions and harvested energy are assumed to be available: causal SI (of the past and present slots) or full SI (of the past, present and future slots). We obtain structural results for the optimal energy allocation, via the use of dynamic programming and convex optimization techniques. In particular, if unlimited energy can be stored in the battery with harvested energy and the full SI is available, we prove the optimality of a water-filling energy allocation solution where the so-called water levels follow a staircase function.
The idea of wireless power transfer (WPT) has been around since the inception of electricity. In the late 19th century, Nikola Tesla described the freedom to transfer energy between two … The idea of wireless power transfer (WPT) has been around since the inception of electricity. In the late 19th century, Nikola Tesla described the freedom to transfer energy between two points without the need for a physical connection to a power source as an "all-surpassing importance to man". A truly wireless device, capable of being remotely powered, not only allows the obvious freedom of movement but also enables devices to be more compact by removing the necessity of a large battery. Applications could leverage this reduction in size and weight to increase the feasibility of concepts such as paper-thin, flexible displays, contact-lens-based augmented reality, and smart dust, among traditional point-to-point power transfer applications. While several methods of wireless power have been introduced since Tesla's work, including near-field magnetic resonance and inductive coupling, laser-based optical power transmission, and far-field RF/microwave energy transmission, only RF/microwave and laser-based systems are truly long-range methods. While optical power transmission certainly has merit, its mechanisms are outside of the scope of this article and will not be discussed.
Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, … Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power the next-generation wireless networks. As this emerging technology enables proactive energy replenishment of wireless devices, it is advantageous in supporting applications with quality-of-service requirements. In this paper, we present a comprehensive literature review on the research progresses in wireless networks with RF energy harvesting capability, which is referred to as RF energy harvesting networks (RF-EHNs). First, we present an overview of the RF-EHNs including system architecture, RF energy harvesting techniques, and existing applications. Then, we present the background in circuit design as well as the state-of-the-art circuitry implementations and review the communication protocols specially designed for RF-EHNs. We also explore various key design issues in the development of RF-EHNs according to the network types, i.e., single-hop networks, multiantenna networks, relay networks, and cognitive radio networks. Finally, we envision some open research directions.
We consider the optimal packet scheduling problem in a single-user energy harvesting wireless communication system. In this system, both the data packets and the harvested energy are modeled to arrive … We consider the optimal packet scheduling problem in a single-user energy harvesting wireless communication system. In this system, both the data packets and the harvested energy are modeled to arrive at the source node randomly. Our goal is to adaptively change the transmission rate according to the traffic load and available energy, such that the time by which all packets are delivered is minimized. Under a deterministic system setting, we assume that the energy harvesting times and harvested energy amounts are known before the transmission starts. For the data traffic arrivals, we consider two different scenarios. In the first scenario, we assume that all bits have arrived and are ready at the transmitter before the transmission starts. In the second scenario, we consider the case where packets arrive during the transmissions, with known arrival times and sizes. We develop optimal off-line scheduling policies which minimize the time by which all packets are delivered to the destination, under causality constraints on both data and energy arrivals.
Power management is an important concern in sensor networks, because a tethered energy infrastructure is usually not available and an obvious concern is to use the available battery energy efficiently. … Power management is an important concern in sensor networks, because a tethered energy infrastructure is usually not available and an obvious concern is to use the available battery energy efficiently. However, in some of the sensor networking applications, an additional facility is available to ameliorate the energy problem: harvesting energy from the environment. Certain considerations in using an energy harvesting source are fundamentally different from that in using a battery, because, rather than a limit on the maximum energy, it has a limit on the maximum rate at which the energy can be used. Further, the harvested energy availability typically varies with time in a nondeterministic manner. While a deterministic metric, such as residual battery, suffices to characterize the energy availability in the case of batteries, a more sophisticated characterization may be required for a harvesting source. Another issue that becomes important in networked systems with multiple harvesting nodes is that different nodes may have different harvesting opportunity. In a distributed application, the same end-user performance may be achieved using different workload allocations, and resultant energy consumptions at multiple nodes. In this case, it is important to align the workload allocation with the energy availability at the harvesting nodes. We consider the above issues in power management for energy-harvesting sensor networks. We develop abstractions to characterize the complex time varying nature of such sources with analytically tractable models and use them to address key design issues. We also develop distributed methods to efficiently use harvested energy and test these both in simulation and experimentally on an energy-harvesting sensor network, prototyped for this work.
Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology … Energy harvesting for wireless communication networks is a new paradigm that allows terminals to recharge their batteries from external energy sources in the surrounding environment. A promising energy harvesting technology is wireless power transfer where terminals harvest energy from electromagnetic radiation. Thereby, the energy may be harvested opportunistically from ambient electromagnetic sources or from sources that intentionally transmit electromagnetic energy for energy harvesting purposes. A particularly interesting and challenging scenario arises when sources perform simultaneous wireless information and power transfer (SWIPT), as strong signals not only increase power transfer but also interference. This paper provides an overview of SWIPT systems with a particular focus on the hardware realization of rectenna circuits and practical techniques that achieve SWIPT in the domains of time, power, antennas, and space. The paper also discusses the benefits of a potential integration of SWIPT technologies in modern communication networks in the context of resource allocation and cooperative cognitive radio networks.
A new type of single-sideband transmitter is described which does not require the use of linear radio-frequency amplifiers. Amplification is accomplished by a process in which the phase-modulation component of … A new type of single-sideband transmitter is described which does not require the use of linear radio-frequency amplifiers. Amplification is accomplished by a process in which the phase-modulation component of the single-sideband wave is amplified by means of Class-C amplifiers, and the amplitude envelope is restored at the final amplifier. Experimental results show performance equal to or better than conventional linear radio-frequency amplifier practices. The over-all efficiency is approximately the same as that of a double-sideband amplitude-modulated transmitter. This system is especially suitable for high-power operation.
Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive … Wireless power transfer (WPT) is a promising new solution to provide convenient and perpetual energy supplies to wireless networks. In practice, WPT is implementable by various technologies such as inductive coupling, magnetic resonate coupling, and electromagnetic (EM) radiation, for short-/mid-/long-range applications, respectively. In this paper, we consider the EM or radio signal enabled WPT in particular. Since radio signals can carry energy as well as information at the same time, a unified study on simultaneous wireless information and power transfer (SWIPT) is pursued. Specifically, this paper studies a multiple-input multiple-output (MIMO) wireless broadcast system consisting of three nodes, where one receiver harvests energy and another receiver decodes information separately from the signals sent by a common transmitter, and all the transmitter and receivers may be equipped with multiple antennas. Two scenarios are examined, in which the information receiver and energy receiver are separated and see different MIMO channels from the transmitter, or co-located and see the identical MIMO channel from the transmitter. For the case of separated receivers, we derive the optimal transmission strategy to achieve different tradeoffs for maximal information rate versus energy transfer, which are characterized by the boundary of a so-called rate-energy (R-E) region. For the case of co-located receivers, we show an outer bound for the achievable R-E region due to the potential limitation that practical energy harvesting receivers are not yet able to decode information directly. Under this constraint, we investigate two practical designs for the co-located receiver case, namely time switching and power splitting, and characterize their achievable R-E regions in comparison to the outer bound.
An emerging solution for prolonging the lifetime of energy constrained relay nodes in wireless networks is to avail the ambient radio-frequency (RF) signal and to simultaneously harvest energy and process … An emerging solution for prolonging the lifetime of energy constrained relay nodes in wireless networks is to avail the ambient radio-frequency (RF) signal and to simultaneously harvest energy and process information. In this paper, an amplify-and-forward (AF) relaying network is considered, where an energy constrained relay node harvests energy from the received RF signal and uses that harvested energy to forward the source information to the destination. Based on the time switching and power splitting receiver architectures, two relaying protocols, namely, i) time switching-based relaying (TSR) protocol and ii) power splitting-based relaying (PSR) protocol are proposed to enable energy harvesting and information processing at the relay. In order to determine the throughput, analytical expressions for the outage probability and the ergodic capacity are derived for delay-limited and delay-tolerant transmission modes, respectively. The numerical analysis provides practical insights into the effect of various system parameters, such as energy harvesting time, power splitting ratio, source transmission rate, source to relay distance, noise power, and energy harvesting efficiency, on the performance of wireless energy harvesting and information processing using AF relay nodes. In particular, the TSR protocol outperforms the PSR protocol in terms of throughput at relatively low signal-to-noise-ratios and high transmission rates.
Wireless networks with energy harvesting battery equipped nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design … Wireless networks with energy harvesting battery equipped nodes are quickly emerging as a viable option for future wireless networks with extended lifetime. Equally important to their counterpart in the design of energy harvesting radios are the design principles that this new networking paradigm calls for. In particular, unlike wireless networks considered to date, the energy replenishment process and the storage constraints of the rechargeable batteries need to be taken into account in designing efficient transmission strategies. In this work, such transmission policies for rechargeable nodes are considered, and optimum solutions for two related problems are identified. Specifically, the transmission policy that maximizes the short term throughput, i.e., the amount of data transmitted in a finite time horizon is found. In addition, the relation of this optimization problem to another, namely, the minimization of the transmission completion time for a given amount of data is demonstrated, which leads to the solution of the latter as well. The optimum transmission policies are identified under the constraints on energy causality, i.e., energy replenishment process, as well as the energy storage, i.e., battery capacity. For battery replenishment, a model with discrete packets of energy arrivals is considered. The necessary conditions that the throughput-optimal allocation satisfies are derived, and then the algorithm that finds the optimal transmission policy with respect to the short-term throughput and the minimum transmission completion time is given. Numerical results are presented to confirm the analytical findings.
In this paper, various ambient energy-harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed. Specifically, far-field … In this paper, various ambient energy-harvesting technologies (solar, thermal, wireless, and piezoelectric) are reviewed in detail and their applicability in the development of self-sustaining wireless platforms is discussed. Specifically, far-field low-power-density energy-harvesting technology is thoroughly investigated and a benchmarking prototype of an embedded microcontroller-enabled sensor platform has been successfully powered by an ambient ultrahigh-frequency (UHF) digital TV signal (512-566 MHz) where a broadcasting antenna is 6.3 km away from the proposed wireless energy-harvesting device. A high-efficiency dual-band ambient energy harvester at 915 MHz and 2.45 GHz and an energy harvester for on-body application at 460 MHz are also presented to verify the capabilities of ambient UHF/RF energy harvesting as an enabling technology for Internet of Things and smart skins applications.
This paper presents a project named "Vision of Future Energy Networks", which aims at a greenfield approach for future energy systems. The definition of energy hubs and the conception of … This paper presents a project named "Vision of Future Energy Networks", which aims at a greenfield approach for future energy systems. The definition of energy hubs and the conception of combined interconnector devices represent key approaches towards a multicarrier greenfield layout. Models and tools for technical, economical and environmental investigations in multicarrier energy systems have been developed and used in various case studies
Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has … Sensor networks with battery-powered nodes can seldom simultaneously meet the design goals of lifetime, cost, sensing reliability and sensing and transmission coverage. Energy-harvesting, converting ambient energy to electrical energy, has emerged as an alternative to power sensor nodes. By exploiting recharge opportunities and tuning performance parameters based on current and expected energy levels, energy harvesting sensor nodes have the potential to address the conflicting design goals of lifetime and performance. This paper surveys various aspects of energy harvesting sensor systems- architecture, energy sources and storage technologies and examples of harvesting-based nodes and applications. The study also discusses the implications of recharge opportunities on sensor node operation and design of sensor network solutions.
We propose an OS-directed power management technique to improve the energy efficiency of sensor nodes. Dynamic power management (DPM) is an effective tool in reducing system power consumption without significantly … We propose an OS-directed power management technique to improve the energy efficiency of sensor nodes. Dynamic power management (DPM) is an effective tool in reducing system power consumption without significantly degrading performance. The basic idea is to shut down devices when not needed and wake them up when necessary. DPM, in general, is not a trivial problem. If the energy and performance overheads in sleep-state transition were negligible, then a simple greedy algorithm that makes the system enter the deepest sleep state when idling would be perfect. However, in reality, sleep-state transitioning has the overhead of storing processor state and turning off power. Waking up also takes a finite amount of time. Therefore, implementing the correct policy for sleep-state transitioning is critical for DPM success. It is argued that power-aware methodology uses an embedded microoperating system to reduce node energy consumption by exploiting both sleep state and active power management.
This paper presents a novel fully integrated passive transponder IC with 4.5- or 9.25-m reading distance at 500-mW ERP or 4-W EIRP base-station transmit power, respectively, operating in the 868/915-MHz … This paper presents a novel fully integrated passive transponder IC with 4.5- or 9.25-m reading distance at 500-mW ERP or 4-W EIRP base-station transmit power, respectively, operating in the 868/915-MHz ISM band with an antenna gain less than -0.5 dB. Apart from the printed antenna, there are no external components. The IC is implemented in a 0.5-μm digital two-poly two-metal digital CMOS technology with EEPROM and Schottky diodes. The IC's power supply is taken from the energy of the received RF electromagnetic field with help of a Schottky diode voltage multiplier. The IC includes dc power supply generation, phase shift keying backscatter modulator, pulse width modulation demodulator, EEPROM, and logic circuitry including some finite state machines handling the protocol used for wireless write and read access to the IC's EEPROM and for the anticollision procedure. The IC outperforms other reported radio-frequency identification ICs by a factor of three in terms of required receive power level for a given base-station transmit power and tag antenna gain.
Microwave power transfer (MPT) delivers energy wirelessly from stations called power beacons (PBs) to mobile devices by microwave radiation. This provides mobiles practically infinite battery lives and eliminates the need … Microwave power transfer (MPT) delivers energy wirelessly from stations called power beacons (PBs) to mobile devices by microwave radiation. This provides mobiles practically infinite battery lives and eliminates the need of power cords and chargers. To enable MPT for mobile recharging, this paper proposes a new network architecture that overlays an uplink cellular network with randomly deployed PBs for powering mobiles, called a hybrid network. The deployment of the hybrid network under an outage constraint on data links is investigated based on a stochastic-geometry model where single-antenna base stations (BSs) and PBs form independent homogeneous Poisson point processes (PPPs) with densities λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> and λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> , respectively, and single-antenna mobiles are uniformly distributed in Voronoi cells generated by BSs. In this model, mobiles and PBs fix their transmission power at p and q, respectively; a PB either radiates isotropically, called isotropic MPT, or directs energy towards target mobiles by beamforming, called directed MPT. The model is used to derive the tradeoffs between the network parameters (p, λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> , q, λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> ) under the outage constraint. First, consider the deployment of the cellular network. It is proved that the outage constraint is satisfied so long as the product pλ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">α/2</sup> is above a given threshold where α is the path-loss exponent. Next, consider the deployment of the hybrid network assuming infinite energy storage at mobiles. It is shown that for isotropic MPT, the product qλ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">α/2</sup> has to be above a given threshold so that PBs are sufficiently dense; for directed MPT, z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> qλ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">α/2</sup> with z <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> denoting the array gain should exceed a different threshold to ensure short distances between PBs and their target mobiles. Furthermore, similar results are derived for the case of mobiles having small energy storage.
This paper studies the newly emerging wireless powered communication network in which one hybrid access point (H-AP) with constant power supply coordinates the wireless energy/information transmissions to/from a set of … This paper studies the newly emerging wireless powered communication network in which one hybrid access point (H-AP) with constant power supply coordinates the wireless energy/information transmissions to/from a set of distributed users that do not have other energy sources. A "harvest-then-transmit" protocol is proposed where all users first harvest the wireless energy broadcast by the H-AP in the downlink (DL) and then send their independent information to the H-AP in the uplink (UL) by time-division-multiple-access (TDMA). First, we study the sum-throughput maximization of all users by jointly optimizing the time allocation for the DL wireless power transfer versus the users' UL information transmissions given a total time constraint based on the users' DL and UL channels as well as their average harvested energy values. By applying convex optimization techniques, we obtain the closed-form expressions for the optimal time allocations to maximize the sum-throughput. Our solution reveals an interesting "doubly near-far" phenomenon due to both the DL and UL distance-dependent signal attenuation, where a far user from the H-AP, which receives less wireless energy than a nearer user in the DL, has to transmit with more power in the UL for reliable information transmission. As a result, the maximum sum-throughput is shown to be achieved by allocating substantially more time to the near users than the far users, thus resulting in unfair rate allocation among different users. To overcome this problem, we furthermore propose a new performance metric so-called common-throughput with the additional constraint that all users should be allocated with an equal rate regardless of their distances to the H-AP. We present an efficient algorithm to solve the common-throughput maximization problem. Simulation results demonstrate the effectiveness of the common-throughput approach for solving the new doubly near-far problem in wireless powered communication networks.
We present the design of a communication system that enables two devices to communicate using ambient RF as the only source of power. Our approach leverages existing TV and cellular … We present the design of a communication system that enables two devices to communicate using ambient RF as the only source of power. Our approach leverages existing TV and cellular transmissions to eliminate the need for wires and batteries, thus enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.
Environmental energy is an attractive power source for low power wireless sensor networks. We present Prometheus, a system that intelligently manages energy transfer for perpetual operation without human intervention or … Environmental energy is an attractive power source for low power wireless sensor networks. We present Prometheus, a system that intelligently manages energy transfer for perpetual operation without human intervention or servicing. Combining positive attributes of different energy storage elements and leveraging the intelligence of the microprocessor, we introduce an efficient multi-stage energy transfer system that reduces the common limitations of single energy storage systems to achieve near perpetual operation. We present our design choices, tradeoffs, circuit evaluations, performance analysis, and models. We discuss the relationships between system components and identify optimal hardware choices to meet an application's needs. Finally we present our implementation of a real system that uses solar energy to power Berkeley's Telos Mote. Our analysis predicts the system will operate for 43 years under 1% load, 4 years under 10% load, and 1 year under 100% load. Our implementation uses a two stage storage system consisting of supercapacitors (primary buffer) and a lithium rechargeable battery (secondary buffer). The mote has full knowledge of power levels and intelligently manages energy transfer to maximize lifetime.
The history of power transmission by radiowaves is reviewed from Heinrich Hertz to the present time with emphasis upon the free-space microwave power transmission era beginning in 1958. The history … The history of power transmission by radiowaves is reviewed from Heinrich Hertz to the present time with emphasis upon the free-space microwave power transmission era beginning in 1958. The history of the technology is developed in terms of its relationship to the intended applications. These include microwave powered aircraft and the Solar Power Satellite concept.
The wireless sensor networks community, has now an increased understanding of the need for realistic link layer models. Recent experimental studies have shown that real deployments have a "transitional region" … The wireless sensor networks community, has now an increased understanding of the need for realistic link layer models. Recent experimental studies have shown that real deployments have a "transitional region" with highly unreliable links, and that therefore the idealized perfect-reception-within-range models used in common network simulation tools can be very misleading. In this paper, we use mathematical techniques from communication theory to model and analyze the low power wireless links. The primary contribution of this work is the identification of the causes of the transitional region, and a quantification of their influence. Specifically, we derive expressions for the packet reception rate as a function of distance, and for the width of the transitional region. These expressions incorporate important channel and radio parameters such as the path loss exponent and shadowing variance of the channel; and the modulation and encoding of the radio. A key finding is that for radios using narrow-band modulation, the transitional region is not an artifact of the radio non-ideality, as it would exist even with perfect-threshold receivers because of multi-path fading. However, we hypothesize that radios with mechanisms to combat multi-path effects, such as spread-spectrum and diversity techniques, can reduce the transitional region.
Simultaneous information and power transfer over the wireless channels potentially offers great convenience to mobile users. Yet practical receiver designs impose technical constraints on its hardware realization, as practical circuits … Simultaneous information and power transfer over the wireless channels potentially offers great convenience to mobile users. Yet practical receiver designs impose technical constraints on its hardware realization, as practical circuits for harvesting energy from radio signals are not yet able to decode the carried information directly. To make theoretical progress, we propose a general receiver operation, namely, dynamic power splitting (DPS), which splits the received signal with adjustable power ratio for energy harvesting and information decoding, separately. Three special cases of DPS, namely, time switching (TS), static power splitting (SPS) and on-off power splitting (OPS) are investigated. The TS and SPS schemes can be treated as special cases of OPS. Moreover, we propose two types of practical receiver architectures, namely, separated versus integrated information and energy receivers. The integrated receiver integrates the front-end components of the separated receiver, thus achieving a smaller form factor. The rate-energy tradeoff for the two architectures are characterized by a so-called rate-energy (R-E) region. The optimal transmission strategy is derived to achieve different rate-energy tradeoffs. With receiver circuit power consumption taken into account, it is shown that the OPS scheme is optimal for both receivers. For the ideal case when the receiver circuit does not consume power, the SPS scheme is optimal for both receivers. In addition, we study the performance for the two types of receivers under a realistic system setup that employs practical modulation. Our results provide useful insights to the optimal practical receiver design for simultaneous wireless information and power transfer (SWIPT).
Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn … Energy harvesting is a promising solution to prolong the operation of energy-constrained wireless networks. In particular, scavenging energy from ambient radio signals, namely wireless energy harvesting (WEH), has recently drawn significant attention. In this paper, we consider a point-to-point wireless link over the narrowband flat-fading channel subject to time-varying co-channel interference. It is assumed that the receiver has no fixed power supplies and thus needs to replenish energy opportunistically via WEH from the unintended interference and/or the intended signal sent by the transmitter. We further assume a single-antenna receiver that can only decode information or harvest energy at any time due to the practical circuit limitation. Therefore, it is important to investigate when the receiver should switch between the two modes of information decoding (ID) and energy harvesting (EH), based on the instantaneous channel and interference condition. In this paper, we derive the optimal mode switching rule at the receiver to achieve various trade-offs between wireless information transfer and energy harvesting. Specifically, we determine the minimum transmission outage probability for delay-limited information transfer and the maximum ergodic capacity for no-delay-limited information transfer versus the maximum average energy harvested at the receiver, which are characterized by the boundary of so-called "outage-energy" region and "rate-energy" region, respectively. Moreover, for the case when the channel state information (CSI) is known at the transmitter, we investigate the joint optimization of transmit power control, information and energy transfer scheduling, and the receiver's mode switching. The effects of circuit energy consumption at the receiver on the achievable rate-energy trade-offs are also characterized. Our results provide useful guidelines for the efficient design of emerging wireless communication systems powered by opportunistic WEH.
The performance of wireless communication is fundamentally constrained by the limited battery life of wireless devices, whose operations are frequently disrupted due to the need of manual battery replacement/recharging. The … The performance of wireless communication is fundamentally constrained by the limited battery life of wireless devices, whose operations are frequently disrupted due to the need of manual battery replacement/recharging. The recent advance in radio frequency (RF) enabled wireless energy transfer (WET) technology provides an attractive solution named wireless powered communication (WPC), where the wireless devices are powered by dedicated wireless power transmitters to provide continuous and stable microwave energy over the air. As a key enabling technology for truly perpetual communications, WPC opens up the potential to build a network with larger throughput, higher robustness, and increased flexibility compared to its battery-powered counterpart. However, the combination of wireless energy and information transmissions also raises many new research problems and implementation issues to be addressed. In this article, we provide an overview of state-of-the-art RF-enabled WET technologies and their applications to wireless communications, with highlights on the key design challenges, solutions, and opportunities ahead.
RF harvesting circuits have been demonstrated for more than 50 years, but only a few have been able to harvest energy from freely available ambient (i.e., non-dedicated) RF sources. In … RF harvesting circuits have been demonstrated for more than 50 years, but only a few have been able to harvest energy from freely available ambient (i.e., non-dedicated) RF sources. In this paper, our objectives were to realize harvester operation at typical ambient RF power levels found within urban and semi-urban environments. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken from outside all of the 270 London Underground stations at street level. Using the results from this survey, four harvesters (comprising antenna, impedance-matching network, rectifier, maximum power point tracking interface, and storage element) were designed to cover four frequency bands from the largest RF contributors (DTV, GSM900, GSM1800, and 3G) within the ultrahigh frequency (0.3-3 GHz) part of the frequency spectrum. Prototypes were designed and fabricated for each band. The overall end-to-end efficiency of the prototypes using realistic input RF power sources is measured; with our first GSM900 prototype giving an efficiency of 40%. Approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using our four prototypes. Furthermore, multiband array architectures were designed and fabricated to provide a broader freedom of operation. Finally, an output dc power density comparison was made between all the ambient RF energy harvesters, as well as alternative energy harvesting technologies, and for the first time, it is shown that ambient RF harvesting can be competitive with the other technologies.
Wireless power technology offers the promise of cutting the last cord, allowing users to seamlessly recharge mobile devices as easily as data are transmitted through the air. Initial work on … Wireless power technology offers the promise of cutting the last cord, allowing users to seamlessly recharge mobile devices as easily as data are transmitted through the air. Initial work on the use of magnetically coupled resonators for this purpose has shown promising results. We present new analysis that yields critical insight into the design of practical systems, including the introduction of key figures of merit that can be used to compare systems with vastly different geometries and operating conditions. A circuit model is presented along with a derivation of key system concepts, such as frequency splitting, the maximum operating distance (critical coupling), and the behavior of the system as it becomes undercoupled. This theoretical model is validated against measured data and shows an excellent average coefficient of determination <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$(R^{2})$</tex> </formula> of 0.9875. An adaptive frequency tuning technique is demonstrated, which compensates for efficiency variations encountered when the transmitter-to-receiver distance and/or orientation are varied. The method demonstrated in this paper allows a fixed-load receiver to be moved to nearly any position and/or orientation within the range of the transmitter and still achieve a near-constant efficiency of over 70% for a range of 0–70 cm.
The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as … The collaborative and low-cost nature of wireless sensor networks (WSNs) brings significant advantages over traditional communication technologies used in today's electric power systems. Recently, WSNs have been widely recognized as a promising technology that can enhance various aspects of today's electric power systems, including generation, delivery, and utilization, making them a vital component of the next-generation electric power system, the smart grid. However, harsh and complex electric-power-system environments pose great challenges in the reliability of WSN communications in smart-grid applications. This paper starts with an overview of the application of WSNs for electric power systems along with their opportunities and challenges and opens up future work in many unexploited research areas in diverse smart-grid applications. Then, it presents a comprehensive experimental study on the statistical characterization of the wireless channel in different electric-power-system environments, including a 500-kV substation, an industrial power control room, and an underground network transformer vault. Field tests have been performed on IEEE 802.15.4-compliant wireless sensor nodes in real-world power delivery and distribution systems to measure background noise, channel characteristics, and attenuation in the 2.4-GHz frequency band. Overall, the empirical measurements and experimental results provide valuable insights about IEEE 802.15.4-compliant sensor network platforms and guide design decisions and tradeoffs for WSN-based smart-grid applications.
Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active … Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.
Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout … Wireless systems comprised of rechargeable nodes have a significantly prolonged lifetime and are sustainable. A distinct characteristic of these systems is the fact that the nodes can harvest energy throughout the duration in which communication takes place. As such, transmission policies of the nodes need to adapt to these harvested energy arrivals. In this paper, we consider optimization of point-to-point data transmission with an energy harvesting transmitter which has a limited battery capacity, communicating in a wireless fading channel. We consider two objectives: maximizing the throughput by a deadline, and minimizing the transmission completion time of the communication session. We optimize these objectives by controlling the time sequence of transmit powers subject to energy storage capacity and causality constraints. We, first, study optimal offline policies. We introduce a directional water-filling algorithm which provides a simple and concise interpretation of the necessary optimality conditions. We show the optimality of an adaptive directional water-filling algorithm for the throughput maximization problem. We solve the transmission completion time minimization problem by utilizing its equivalence to its throughput maximization counterpart. Next, we consider online policies. We use stochastic dynamic programming to solve for the optimal online policy that maximizes the average number of bits delivered by a deadline under stochastic fading and energy arrival processes with causal channel state feedback. We also propose near-optimal policies with reduced complexity, and numerically study their performances along with the performances of the offline and online optimal policies under various different configurations.
The fundamental tradeoff between the rates at which energy and reliable information can be transmitted over a single noisy line is studied. Engineering inspiration for this problem is provided by … The fundamental tradeoff between the rates at which energy and reliable information can be transmitted over a single noisy line is studied. Engineering inspiration for this problem is provided by powerline communication, RFID systems, and covert packet timing systems as well as communication systems that scavenge received energy. A capacity-energy function is defined and a coding theorem is given. The capacity-energy function is a non-increasing concave cap function. Capacity-energy functions for several channels are computed.
An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages. Passive rectifier circuits are designed in a … An RF-DC power conversion system is designed to efficiently convert far-field RF energy to DC voltages at very low received power and voltages. Passive rectifier circuits are designed in a 0.25 mum CMOS technology using floating gate transistors as rectifying diodes. The 36-stage rectifier can rectify input voltages as low as 50 mV with a voltage gain of 6.4 and operates with received power as low as 5.5 muW(22.6 dBm). Optimized for far field, the circuit operates at a distance of 44 m from a 4 W EIRP source. The high voltage range achieved at low load current make it ideal for use in passively powered sensor networks.
Wireless systems where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements are considered. In this context, the best modulation … Wireless systems where the nodes operate on batteries so that energy consumption must be minimized while satisfying given throughput and delay requirements are considered. In this context, the best modulation strategy to minimize the total energy consumption required to send a given number of bits is analyzed. The total energy consumption includes both the transmission energy and the circuit energy consumption. For uncoded systems, by optimizing the transmission time and the modulation parameters, it is shown that up to 80% energy savings is achievable over nonoptimized systems. For coded systems, it is shown that the benefit of coding varies with the transmission distance and the underlying modulation schemes.
We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a … We study a sensor node with an energy harvesting source. The generated energy can be stored in a buffer. The sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time. We obtain energy management policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue.We also compare performance of several easily implementable sub-optimal energy management policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay.
This paper presents a study of reception and rectification of broad-band statistically time-varying low-power-density microwave radiation. The applications are in wireless powering of industrial sensors and recycling of ambient RF … This paper presents a study of reception and rectification of broad-band statistically time-varying low-power-density microwave radiation. The applications are in wireless powering of industrial sensors and recycling of ambient RF energy. A 64-element dual-circularly-polarized spiral rectenna array is designed and characterized over a frequency range of 2-18 GHz with single-tone and multitone incident waves. The integrated design of the antenna and rectifier, using a combination of full-wave electromagnetic field analysis and harmonic balance nonlinear circuit analysis, eliminates matching and filtering circuits, allowing for a compact element design. The rectified dc power and efficiency is characterized as a function of dc load and dc circuit topology, RF frequency, polarization, and incidence angle for power densities between 10/sup -5/-10/sup -1/ mW/cm/sup 2/. In addition, the increase in rectenna efficiency for multitone input waves is presented.
In this paper we examine the somewhat controversial subject of energy consumption of networking devices in the Internet, motivated by data collected by the U.S. Department of Commerce. We discuss … In this paper we examine the somewhat controversial subject of energy consumption of networking devices in the Internet, motivated by data collected by the U.S. Department of Commerce. We discuss the impact on network protocols of saving energy by putting network interfaces and other router & switch components to sleep. Using sample packet traces, we first show that it is indeed reasonable to do this and then we discuss the changes that may need to be made to current Internet protocols to support a more aggressive strategy for sleeping. Since this is a position paper, we do not present results but rather suggest interesting directions for core networking research. The impact of saving energy is huge, particularly in the developing world where energy is a precious resource whose scarcity hinders widespread Internet deployment.
In this letter, we propose a practical non-linear energy harvesting model and design a resource allocation algorithm for simultaneous wireless information and power transfer (SWIPT) systems. The algorithm design is … In this letter, we propose a practical non-linear energy harvesting model and design a resource allocation algorithm for simultaneous wireless information and power transfer (SWIPT) systems. The algorithm design is formulated as a non-convex optimization problem for the maximization of the total harvested power at energy harvesting receivers subject to minimum required signal-to-interference-plus-noise ratios (SINRs) at multiple information receivers. We transform the considered non-convex objective function from sum-of-ratios form into an equivalent objective function in subtractive form, which enables the derivation of an efficient iterative resource allocation algorithm. In each iteration, a rank-constrained semidefinite program (SDP) is solved optimally by SDP relaxation. Numerical results unveil a substantial performance gain that can be achieved if the resource allocation design is based on the proposed non-linear energy harvesting model instead of the traditional linear model.
Sustainable operation of battery powered wireless embedded systems (such as sensor nodes) is a key challenge, and considerable research effort has been devoted to energy optimization of such systems. Environmental … Sustainable operation of battery powered wireless embedded systems (such as sensor nodes) is a key challenge, and considerable research effort has been devoted to energy optimization of such systems. Environmental energy harvesting, in particular solar based, has emerged as a viable technique to supplement battery supplies. However, designing an efficient solar harvesting system to realize the potential benefits of energy harvesting requires an in-depth understanding of several factors. For example, solar energy supply is highly time varying and may not always be sufficient to power the embedded system. Harvesting components, such as solar panels, and energy storage elements, such as batteries or ultracapacitors, have different voltage-current characteristics, which must be matched to each other as well as the energy requirements of the system to maximize harvesting efficiency. Further, battery non-idealities, such as self-discharge and round trip efficiency, directly affect energy usage and storage decisions. The ability of the system to modulate its power consumption by selectively deactivating its sub-components also impacts the overall power management architecture. This paper describes key issues and tradeoffs which arise in the design of solar energy harvesting, wireless embedded systems and presents the design, implementation, and performance evaluation of Heliomote, our prototype that addresses several of these issues. Experimental results demonstrate that Heliomote, which behaves as a plug-in to the Berkeley/Crossbow motes and autonomously manages energy harvesting and storage, enables near-perpetual, harvesting aware operation of the sensor node.
Recently, ambient backscatter communications has been introduced as a cutting-edge technology which enables smart devices to communicate by utilizing ambient radio frequency (RF) signals without requiring active RF transmission.This technology … Recently, ambient backscatter communications has been introduced as a cutting-edge technology which enables smart devices to communicate by utilizing ambient radio frequency (RF) signals without requiring active RF transmission.This technology is especially effective in addressing communication and energy efficiency problems for low-power communications systems such as sensor networks.It is expected to realize numerous Internet-of-Things (IoT) applications.Therefore, this paper aims to provide a contemporary and comprehensive literature review on fundamentals, applications, challenges, and research efforts/progress of ambient backscatter communications.In particular, we first present fundamentals of backscatter communications and briefly review bistatic backscatter communications systems.Then, the general architecture, advantages, and solutions to address existing issues and limitations of ambient backscatter communications systems are discussed.Additionally, emerging applications of ambient backscatter communications are highlighted.Finally, we outline some open issues and future research directions.
Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential health concerns arising due to high … Initial efforts on wireless power transfer (WPT) have concentrated toward long-distance transmission and high power applications. Nonetheless, the lower achievable transmission efficiency and potential health concerns arising due to high power applications, have caused limitations in their further developments. Due to tremendous energy consumption growth with ever-increasing connected devices, alternative wireless information and power transfer techniques have been important not only for theoretical research but also for the operational costs saving and for the sustainable growth of wireless communications. In this regard, radio frequency energy harvesting (RF-EH) for a wireless communications system presents a new paradigm that allows wireless nodes to recharge their batteries from the RF signals instead of fixed power grids and the traditional energy sources. In this approach, the RF energy is harvested from ambient electromagnetic sources or from the sources that directionally transmit RF energy for EH purposes. Notable research activities and major advances have occurred over the last decade in this direction. Thus, this paper provides a comprehensive survey of the state-of-art techniques, based on advances and open issues presented by simultaneous wireless information and power transfer (SWIPT) and WPT assisted technologies. More specifically, in contrast to the existing works, this paper identifies and provides a detailed description of various potential emerging technologies for the fifth generation communications with SWIPT/WPT. Moreover, we provide some interesting research challenges and recommendations with the objective of stimulating future research in this emerging domain.
Mobile-edge computing (MEC) and wireless power transfer (WPT) have been recognized as promising techniques in the Internet of Things era to provide massive low-power wireless devices with enhanced computation capability … Mobile-edge computing (MEC) and wireless power transfer (WPT) have been recognized as promising techniques in the Internet of Things era to provide massive low-power wireless devices with enhanced computation capability and sustainable energy supply. In this paper, we propose a unified MEC-WPT design by considering a wireless powered multiuser MEC system, where a multiantenna access point (AP) (integrated with an MEC server) broadcasts wireless power to charge multiple users and each user node relies on the harvested energy to execute computation tasks. With MEC, these users can execute their respective tasks locally by themselves or offload all or part of them to the AP based on a time-division multiple access protocol. Building on the proposed model, we develop an innovative framework to improve the MEC performance, by jointly optimizing the energy transmit beamforming at the AP, the central processing unit frequencies and the numbers of offloaded bits at the users, as well as the time allocation among users. Under this framework, we address a practical scenario where latency-limited computation is required. In this case, we develop an optimal resource allocation scheme that minimizes the AP's total energy consumption subject to the users' individual computation latency constraints. Leveraging the state-of-the-art optimization techniques, we derive the optimal solution in a semiclosed form. Numerical results demonstrate the merits of the proposed design over alternative benchmark schemes.
Sensitive sensing Neonatal care, particularly for premature babies, is complicated by the infants' fragility and by the need for a large number of tethered sensors to be attached to their … Sensitive sensing Neonatal care, particularly for premature babies, is complicated by the infants' fragility and by the need for a large number of tethered sensors to be attached to their tiny bodies. Chung et al. developed a pair of sensors that only require water to adhere to the skin and allow for untethered monitoring of key vital signs (see the Perspective by Guinsburg). On-board data processing allowed for efficient wireless near-field communication using standard protocols. The absence of cables makes it easier to handle the infants and allows for skin-to-skin contact between the babies and their parents or caregivers. Science , this issue p. eaau0780 ; see also p. 924
Radio waves carry both energy and information simultaneously. Nevertheless, radio-frequency (RF) transmissions of these quantities have traditionally been treated separately. Currently, the community is experiencing a paradigm shift in wireless … Radio waves carry both energy and information simultaneously. Nevertheless, radio-frequency (RF) transmissions of these quantities have traditionally been treated separately. Currently, the community is experiencing a paradigm shift in wireless network design, namely, unifying wireless transmission of information and power so as to make the best use of the RF spectrum and radiation as well as the network infrastructure for the dual purpose of communicating and energizing. In this paper, we review and discuss recent progress in laying the foundations of the envisioned dual purpose networks by establishing a signal theory and design for wireless information and power transmission (WIPT) and identifying the fundamental tradeoff between conveying information and power wirelessly. We start with an overview of WIPT challenges and technologies, namely, simultaneous WIPT (SWIPT), wirelessly powered communication networks (WPCNs), and wirelessly powered backscatter communication (WPBC). We then characterize energy harvesters and show how WIPT signal and system designs crucially revolve around the underlying energy harvester model. To that end, we highlight three different energy harvester models, namely, one linear model and two nonlinear models, and show how WIPT designs differ for each of them in single-user and multi-user deployments. Topics discussed include rate-energy region characterization, transmitter and receiver architectures, waveform design, modulation, beamforming and input distribution optimizations, resource allocation, and RF spectrum use. We discuss and check the validity of the different energy harvester models and the resulting signal theory and design based on circuit simulations, prototyping, and experimentation. We also point out numerous directions that are promising for future research.
Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks and Internet of Things. … Finite battery lifetime and low computing capability of size-constrained wireless devices (WDs) have been longstanding performance limitations of many low-power wireless networks, e.g., wireless sensor networks and Internet of Things. The recent development of radio frequency-based wireless power transfer (WPT) and mobile edge computing (MEC) technologies provide a promising solution to fully remove these limitations so as to achieve sustainable device operation and enhanced computational capability. In this paper, we consider a multi-user MEC network powered by the WPT, where each energy-harvesting WD follows a binary computation offloading policy, i.e., the data set of a task has to be executed as a whole either locally or remotely at the MEC server via task offloading. In particular, we are interested in maximizing the (weighted) sum computation rate of all the WDs in the network by jointly optimizing the individual computing mode selection (i.e., local computing or offloading) and the system transmission time allocation (on WPT and task offloading). The major difficulty lies in the combinatorial nature of the multi-user computing mode selection and its strong coupling with the transmission time allocation. To tackle this problem, we first consider a decoupled optimization, where we assume that the mode selection is given and propose a simple bi-section search algorithm to obtain the conditional optimal time allocation. On top of that, a coordinate descent method is devised to optimize the mode selection. The method is simple in implementation but may suffer from high computational complexity in a large-size network. To address this problem, we further propose a joint optimization method based on the alternating direction method of multipliers (ADMM) decomposition technique, which enjoys a much slower increase of computational complexity as the networks size increases. Extensive simulations show that both the proposed methods can efficiently achieve a near-optimal performance under various network setups, and significantly outperform the other representative benchmark methods considered.
This paper summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy … This paper summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access, and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed, as well as models for energy consumption at the nodes.
K. P. Ray | International Journal for Research in Applied Science and Engineering Technology
The global transition to electric vehicles (EVs) necessitates robust, efficient, and sustainable charging infrastructure. This paper presents a comprehensive analysis of automatic wireless vehicle charging systems integrated with solar energy, … The global transition to electric vehicles (EVs) necessitates robust, efficient, and sustainable charging infrastructure. This paper presents a comprehensive analysis of automatic wireless vehicle charging systems integrated with solar energy, addressing the critical need for eco-friendly and convenient EV power solutions. The fundamental principles of wireless power transfer (WPT) technologies, including inductive, resonant, and capacitive coupling, are explored, highlighting their suitability and limitations for EV applications. The integration of solar energy is examined, detailing photovoltaic conversion, energy storage mechanisms, and the overall system architecture that enables seamless, grid-independent charging. Key technical challenges such as power transfer efficiency, coil misalignment, foreign object detection (FOD), and electromagnetic interference (EMI) are discussed, alongside proposed mitigation strategies. The paper further investigates the crucial role of smart grid integration and Vehicle-to-Grid (V2G) capabilities in enhancing grid stability and energy management. Current global research, pilot projects, and commercial initiatives demonstrate the accelerating maturity of this technology. While offering significant advantages in environmental impact, energy independence, and user convenience, solar-powered wireless EV charging systems face hurdles related to initial costs, efficiency losses, and land use. The future outlook points towards advanced materials, artificial intelligence (AI)-driven optimization, and standardized protocols as pivotal for widespread adoption, paving the way for a cleaner, more resilient, and sustainable transportation ecosystem.
Mr. Kuldeep Pawar | International Scientific Journal of Engineering and Management
Abstract: Power banks are one of the need to have product these days. But even power banks need charging. For that one needs to get the power bank charged in … Abstract: Power banks are one of the need to have product these days. But even power banks need charging. For that one needs to get the power bank charged in a power plug. This is not always possible when travelling so here we design a smart solar powered folding power bank. The solar power bank integrates solar charging with efficient battery support and wireless charging to provide a multi functional unique power bank product. The device is able to self charge anywhere during day time so that he user never runs out of power. This Wireless charging solar power bank provides the following advantages: Easy Wireless Charging for compatible phones. Solar Self Charging. Foldable Design for Portability. 20000maH battery backup. Added USB Type Charging port availability.
Peter Bukelani Musiiwa , Garikayi Sinati , S. Magidi | International Journal of Latest Technology in Engineering Management & Applied Science
Abstract: The demand for green and sustainable energy has grown significantly in recent years. Traditional energy sources, such as fossil fuels and nuclear power, pose serious environmental risks, driving the … Abstract: The demand for green and sustainable energy has grown significantly in recent years. Traditional energy sources, such as fossil fuels and nuclear power, pose serious environmental risks, driving the adoption of renewable alternatives. [1] While solar energy has seen substantial advancements, other technologies—including piezoelectric, radio frequency (RF) harvesting, and gyroscopic energy harvesting—remain underdeveloped. Among these, RF energy harvesting holds immense potential to revolutionize low-power applications, particularly for Internet of Things (IoT) devices such as sensors, wearables, smartphones, and unmanned aerial vehicles (UAVs). However, current RF harvesters suffer from inefficiencies in energy synthesis, resulting in low voltage output and limited practical use. For instance, Powercast’s state-of-the-art solution achieves 75% efficiency but only within a 24-meter range. [2] To address these challenges, this paper introduces novel filter bank architecture for RF energy harvesting, leveraging microstrip, passive, and active filters to achieve wider bandwidth and improved efficiency. Filters play a critical role in signal processing, and while modern digital filters excel in reconfigurability, analog filters remain essential in RF harvesting to mitigate noise and enhance voltage stability. Our proposed design integrates four specialized filters, rigorously tested through MATLAB and AWR simulations. The results demonstrate significant improvements in energy synthesis, paving the way for self-powering devices that could eventually eliminate the need for traditional chargers and charging ports. [2] [3]
Mobile edge computing (MEC) and wireless power transmission (WPT) can provide energy supply and task computing for wireless devices, effectively improving the energy efficiency of devices. On the basis of … Mobile edge computing (MEC) and wireless power transmission (WPT) can provide energy supply and task computing for wireless devices, effectively improving the energy efficiency of devices. On the basis of wireless energy transfer for drones, we provide an approach to optimizing energy usage for edge computing systems. By simultaneously optimizing the energy harvesting (EH) duration, user transmission power, as well as offloading choice, the presented method reduces the overall energy usage of the system. We decompose the optimization problem into two sub-problems with the block coordinate descent method (BCD). Simulation results suggest that our presented system energy consumption optimization method outperforms other baseline schemes and the energy required by the system can be significantly reduced.
Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone … Wireless Power Transfer (WPT) enables efficient, contactless charging for mobile devices by eliminating mechanical connectors and wiring, thereby enhancing user experience and device longevity. However, conventional WPT systems remain prone to performance issues such as coil misalignment, resonance instability, and thermal losses. Addressing these challenges involves designing coil geometries that operate at lower resonant frequencies to strengthen magnetic coupling and decrease resistance. This work introduces a WPT system with a performance-driven coil design aimed at maximizing magnetic coupling and mutual inductance between the transmitting (Tx) and receiving (Rx) coils in mobile devices. Due to the nonlinear behavior of magnetic flux and the high computational cost of simulations, exploring the full design space for coils using ANSYS Maxwell becomes impractical. To address this complexity, a machine learning (ML)-based optimization framework is developed to efficiently navigate the design space. The framework integrates a hybrid sequential neural network and multivariate regression model to optimize coil winding and ferrite core geometry. The optimized structure achieves a mutual inductance of 12.52 μH with a conventional core, outperforming many existing ML models. Finite element simulations and experimental results validate the robustness of the method, which offers a scalable solution for efficient wireless charging in compact, misalignment-prone environments.
| Biomedical Safety & Standards
Mr. Kuldeep Pawar | International Scientific Journal of Engineering and Management
Abstract – This project revolves around the development of a solar-powered portable charger equipped with wireless charging functionality. Harnessing solar energy through embedded photovoltaic cells, the power bank offers a … Abstract – This project revolves around the development of a solar-powered portable charger equipped with wireless charging functionality. Harnessing solar energy through embedded photovoltaic cells, the power bank offers a sustainable and on-the-go power solution. The inclusion of wireless charging technology adds convenience to device charging, catering to the growing demand for cable-free experiences. This abstract summarizes the project's focus on combining solar efficiency with wireless convenience, aligning with the pursuit of eco-friendly and user-friendly energy solutions.
Deepak R. Patil | International Scientific Journal of Engineering and Management
Abstract - Wireless power transfer (WPT) using magnetic resonance is the technology which could set human free from the annoying wires. In fact, the WPT adopts the same basic theory … Abstract - Wireless power transfer (WPT) using magnetic resonance is the technology which could set human free from the annoying wires. In fact, the WPT adopts the same basic theory which has already been developed for at least 30 years with the term inductive power transfer. WPT technology is developing rapidly in recent years. At kilowatts power level, the transfer distance increases from several millimeters to several hundred millimeters with a grid to load efficiency above 90%. The advances make the WPT very attractive to the electric vehicle (EV) charging applications in both stationary and dynamic charging scenarios. For energy, environment, and many other reasons, the electrification for transportation has been carrying out for many years. In railway systems, the electric locomotives have already been well developed for many years. A train runs on a fixed track. It is easy to get electric power from a conductor rail using pantograph sliders. However, for electric vehicles (EVs), the high flexibility makes it not easy to get power in a similar way. Instead, a high power and large capacity battery pack is usually equipped as an energy storage unit to make an EV to operate for a satisfactory distance. Until now, the EVs are not so attractive to consumers even with many government incentive programs. Government subsidy and tax incentives are one key to increase the market share of EV today. The problem for an electric vehicle is nothing else but the electricity storage technology, which requires a battery which is the bottleneck today due to its unsatisfactory energy density, limited lifetime
The increasing demand for high-capacity, energy-efficient wireless networks poses significant challenges in maintaining spectral efficiency, minimizing interference, and ensuring sustainability. Traditional direct-link communication suffers from signal degradation due to path … The increasing demand for high-capacity, energy-efficient wireless networks poses significant challenges in maintaining spectral efficiency, minimizing interference, and ensuring sustainability. Traditional direct-link communication suffers from signal degradation due to path loss, multipath fading, and interference, limiting overall performance. To mitigate these challenges, this paper proposes a unified RIS framework that integrates passive and active Reconfigurable Intelligent Surfaces (RISs) for enhanced communication and ambient RF energy harvesting. Our methodology optimizes RIS-assisted beamforming using successive convex approximation (SCA) and adaptive phase shift tuning, maximizing desired signal reception while reducing interference. Passive RIS efficiently reflects signals without external power, whereas active RIS employs amplification-assisted reflection for superior performance. Evaluations using realistic urban macrocell and mmWave channel models reveal that, compared to direct links, passive RIS boosts SNR from 3.0 dB to 7.1 dB, and throughput from 2.6 Gbps to 4.6 Gbps, while active RIS further enhances the SNR to 10.0 dB and throughput to 6.8 Gbps. Energy efficiency increases from 0.44 to 0.67 (passive) and 0.82 (active), with latency reduced from 80 ms to 35 ms. These performance metrics validate the proposed approach and highlight its potential applications in urban 5G networks, IoT systems, high-mobility scenarios, and other next-generation wireless environments.
This study investigates the vibrational energy harvesting capabilities of axially functionally graded nonprismatic piezolaminated beams under combined thermal-mechanical loading conditions for automotive applications. A coupled multi-physics finite element model was … This study investigates the vibrational energy harvesting capabilities of axially functionally graded nonprismatic piezolaminated beams under combined thermal-mechanical loading conditions for automotive applications. A coupled multi-physics finite element model was developed to analyze the electromechanical response of tapered cantilever beams with varying width (cb) and height (ch) taper coefficients while maintaining a material gradient index (k=1) and power law exponent (np=4). Four geometric configurations with taper coefficients of 0.3 and 0.7 were subjected to both isolated mechanical impulses loading and combined thermal-mechanical loading with a 50°C temperature gradient. Results demonstrate that taper parameters significantly influence performance, with height tapering showing greater impact on displacement response than width tapering. Thermal loading increased displacement by 16.7-66.7% across configurations, highlighting complex thermal-mechanical coupling effects. Voltage generation was enhanced with increasing taper coefficients, reaching 340 V/mm in the optimized configuration (cb =0.7, ch =0.7) compared to 140 V/mm in the baseline configuration (cb=0.3, ch=0.3). Most notably, output power exhibited dramatic enhancement under combined loading conditions, with the optimized configuration achieving 0.15 W/mm², representing a 650% increase over mechanical loading alone. The findings suggest that axially functionally graded nonprismatic piezolaminated beams offer promising solutions for harvesting waste vibrational and thermal energy in automotive environments, with the potential to power various low-energy automotive sensors and monitoring systems.
Wireless connectivity challenges hinder the deployment of embedded systems. We introduce AudioCast to address two critical issues: spectrum scarcity-induced contention and high power consumption in transmitters. The widespread availability of … Wireless connectivity challenges hinder the deployment of embedded systems. We introduce AudioCast to address two critical issues: spectrum scarcity-induced contention and high power consumption in transmitters. The widespread availability of broadcast radio receivers (for example, FM radios using the 88-108 MHz spectrum) and access to underutilized lower-frequency spectrum motivate the design of AudioCast. The lower-frequency spectrum offers superior radio-wave propagation characteristics, exhibiting at least 10 × lower path loss than the 2.4 GHz and 5 GHz Industrial, Scientific, and Medical (ISM) bands while avoiding congestion and interference. These properties enable reliable and long-distance communication, even for weakly radiated signals. AudioCast builds on these properties and the unique negative resistance of a tunnel diode. AudioCast rethinks the architecture of radio transmitters using a tunnel diode oscillator to generate carrier signals and self-modulate them with baseband signals. This results in frequency-modulated transmissions at an overall power consumption below 200 μW. Unlike related systems based on the backscatter mechanism, AudioCast does not require an externally generated carrier or rely on ambient signals. We argue that AudioCast represents an example of a new class of transmitters which we conceptualize as Beyond-Backscatter transmitters. Through experiments, we demonstrate that AudioCast achieves a transmission range of up to 130 m in line-of-sight and tens of meters in non-line-of-sight conditions respectively. These transmissions are decodable by ubiquitous commodity FM receivers in cars, homes, and phones. We evaluate AudioCast through theoretical analysis, benchtop experiments, and urban/indoor field deployments. Additionally, we prototype and demonstrate novel applications, including low-power voice transmissions and hand gesture communication, enabled by AudioCast's range and power efficiency.
Imran Fahad , Danny Scott , Azizul Zahid +5 more | Proceedings of the ACM on Interactive Mobile Wearable and Ubiquitous Technologies
Paper-based interactive RF devices have opened new possibilities for wireless sensing, yet they are typically constrained by short operational ranges. This paper introduces RadioGami, a method for creating long-range, batteryless … Paper-based interactive RF devices have opened new possibilities for wireless sensing, yet they are typically constrained by short operational ranges. This paper introduces RadioGami, a method for creating long-range, batteryless RF sensing surfaces on paper using low-cost, DIY materials like copper tape, paper, and off-the-shelf electronics paired with an affordable radio receiver (approx. $20). We explore the design space enabled by RadioGami, including sensing paper deformations like bending, tearing, and origami patterns (Miura, Kresling) at ranges up to 45.73 meters. RadioGami employs a novel ultra-low power (35μW) switching circuit with a tunnel diode for wireless functionality. These surfaces can sustainably operate by harvesting energy using tiny photodiodes. We demonstrate applications that monitor object status, track user interactions (rotation, sliding), and detect environmental changes. We characterize performance, sensitivity, range, and power consumption with deployment studies. RadioGami advances sustainable, tangible, and batteryless interfaces for embodied interaction.