Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Michael B. Chang
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
2024
Gemini Team
Machel Reid
Nikolay Savinov
Denis Teplyashin
Dmitry
Lepikhin
Timothy Lillicrap
Jean-baptiste Alayrac
Radu Soricut
Angeliki Lazaridou
+
Gemini: A Family of Highly Capable Multimodal Models
2023
Gemini Team
Rohan Anil
Sebastian Borgeaud
Jean-Baptiste Alayrac
Jiahui Yu
Radu Soricut
Johan Schalkwyk
Andrew M. Dai
Anja Hauth
Katie Millican
+
Automatically Composing Representation Transformations as a Means for Generalization
2018
Michael B. Chang
Abhishek Gupta
Sergey Levine
Thomas L. Griffiths
+
A Compositional Object-Based Approach to Learning Physical Dynamics
2016
Michael B. Chang
Tomer Ullman
Antonio Torralba
Joshua B. Tenenbaum
+
A Compositional Object-Based Approach to Learning Physical Dynamics
2016
Michael B. Chang
Tomer Ullman
Antonio Torralba
Joshua B. Tenenbaum
Common Coauthors
Coauthor
Papers Together
Laura Knight
2
Alek Dimitriev
2
Jack W. Rae
2
Richard Tanburn
2
Maxim Krikun
2
Érica Rodrigues Moreira
2
Demis Hassabis
2
James Molloy
2
Arthur Guez
2
Josip Djolonga
2
Anudhyan Boral
2
Jeremy Wiesner
2
Nimesh Ghelani
2
Jacob Austin
2
Adam Paszke
2
Parker Schuh
2
Paul Komarek
2
Kiran Vodrahalli
2
Mukund Sundararajan
2
Olivier Dousse
2
Alex Tomala
2
Yonghui Wu
2
Komal Jalan
2
Disha Shrivastava
2
Balaji Lakshminarayanan
2
Sanjay Ghemawat
2
Shuo-Yiin Chang
2
Jessica Landon
2
Nithya Attaluri
2
Axel Stjerngren
2
Michael Sharman
2
Sergey Brin
2
Thibault Sottiaux
2
Raphaël Lopez Kaufman
2
Abhanshu Sharma
2
Phil Crone
2
Ken Franko
2
Andrew Brock
2
Mantas Pajarskas
2
David F. Steiner
2
Oriol Vinyals
2
Remi Crocker
2
Tianqi Liu
2
Vincent J. Hellendoorn
2
Devendra Singh Sachan
2
Ethan Dyer
2
Nina Martin
2
Ricardo Aguilar
2
Vittorio Selo
2
Henryk Michalewski
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Understanding Visual Concepts with Continuation Learning
2016
WILLIAM F. WHITNEY
Michael Chang
Tejas D. Kulkarni
Joshua B. Tenenbaum
2
+
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models
2016
S. M. Ali Eslami
Nicolas Heess
Théophane Weber
Yuval Tassa
David Szepesvari
Koray Kavukcuoglu
Geoffrey E. Hinton
2
+
Neural Programmer-Interpreters
2015
Scott Reed
Nando de Freitas
2
+
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
2016
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
2
+
Striving for Simplicity: The All Convolutional Net
2014
Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
1
+
rnn : Recurrent Library for Torch
2015
Nicholas Léonard
Sagar Waghmare
Yang Wang
Jin-Hwa Kim
1
+
Neural GPUs Learn Algorithms
2015
Łukasz Kaiser
Ilya Sutskever
1
+
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models
2015
Juergen Schmidhuber
1
+
Learning to Compose Neural Networks for Question Answering
2016
Jacob Andreas
Marcus Rohrbach
Trevor Darrell
Dan Klein
1
+
Gated Graph Sequence Neural Networks
2016
Yujia Li
Daniel Tarlow
Marc Brockschmidt
Richard S. Zemel
1
+
Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images
2015
Roozbeh Mottaghi
Hessam Bagherinezhad
Mohammad Rastegari
Ali Farhadi
1
+
Learning Visual Predictive Models of Physics for Playing Billiards
2015
Katerina Fragkiadaki
Pulkit Agrawal
Sergey Levine
Jitendra Malik
1
+
To Fall Or Not To Fall: A Visual Approach to Physical Stability Prediction
2016
Wenbin Li
Seyedmajid Azimi
Aleš Leonardis
Mario Fritz
1
+
Adaptive Computation Time for Recurrent Neural Networks
2016
Alex Graves
1
+
Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation
2016
Tejas D. Kulkarni
Karthik Narasimhan
Ardavan Saeedi
Joshua B. Tenenbaum
1
+
Learning to Poke by Poking: Experiential Learning of Intuitive Physics
2016
Pulkit Agrawal
Ashvin Nair
Pieter Abbeel
Jitendra Malik
Sergey Levine
1
+
TerpreT: A Probabilistic Programming Language for Program Induction
2016
Alexander L. Gaunt
Marc Brockschmidt
Rishabh Singh
Nate Kushman
Pushmeet Kohli
Jonathan M. Taylor
Daniel Tarlow
1
+
The Option-Critic Architecture
2016
Pierre‐Luc Bacon
Jean Harb
Doina Precup
1
+
Using Fast Weights to Attend to the Recent Past
2016
Jimmy Ba
Geoffrey E. Hinton
Volodymyr Mnih
Joel Z. Leibo
Catalin Ionescu
1
+
PDF
Chat
Inverse Compositional Spatial Transformer Networks
2017
Chen-Hsuan Lin
Simon Lucey
1
+
PathNet: Evolution Channels Gradient Descent in Super Neural Networks
2017
Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwólš
David Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
1
+
Differentiable Functional Program Interpreters
2016
John Feser
Marc Brockschmidt
Alexander L. Gaunt
Daniel Tarlow
1
+
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
2017
Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+
Making Neural Programming Architectures Generalize via Recursion
2017
Jonathon Cai
Richard Shin
Dawn Song
1
+
Metacontrol for Adaptive Imagination-Based Optimization
2017
Jessica B. Hamrick
Andrew J. Ballard
Razvan Pascanu
Oriol Vinyals
Nicolas Heess
Peter Battaglia
1
+
A simple neural network module for relational reasoning
2017
Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
1
+
Gradient Episodic Memory for Continual Learning
2017
David López-Paz
Marc’Aurelio Ranzato
1
+
Proximal Policy Optimization Algorithms
2017
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+
Independently Controllable Factors
2017
Valentin Thomas
Jules Pondard
Emmanuel Bengio
Marc Sarfati
Philippe Beaudoin
Marie‐Jean Meurs
Joëlle Pineau
Doina Precup
Yoshua Bengio
1
+
Neural Task Programming: Learning to Generalize Across Hierarchical Tasks
2017
Danfei Xu
Suraj Nair
Yuke Zhu
Julian Gao
Animesh Garg
Li Fei-Fei
Silvio Savarese
1
+
Meta Learning Shared Hierarchies
2017
Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
1
+
Learning to select computations
2017
Falk Lieder
Frederick Callaway
Sayan Gul
Paul M. Krueger
Thomas L. Griffiths
1
+
Learning Independent Causal Mechanisms
2017
Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
1
+
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
2018
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas L. Griffiths
1
+
Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions
2018
Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
1
+
Towards Synthesizing Complex Programs from Input-Output Examples
2017
Xinyun Chen
Chang Liu
Dawn Song
1
+
A Simple Neural Attentive Meta-Learner
2017
Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
1
+
Memorize or generalize? Searching for a compositional RNN in a haystack
2018
Adam Liska
Germán Kruszewski
Marco Baroni
1
+
Meta-Reinforcement Learning of Structured Exploration Strategies
2018
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
1
+
Synthesizing Programs for Images using Reinforced Adversarial Learning
2018
Yaroslav Ganin
Tejas Kulkarni
I. Babuschkin
S. M. Ali Eslami
Oriol Vinyals
1
+
Universal Planning Networks
2018
Aravind Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
1
+
Graph networks as learnable physics engines for inference and control
2018
Álvaro Sánchez‐González
Nicolas Heess
Jost Tobias Springenberg
Josh Merel
Martin Riedmiller
Raia Hadsell
Peter Battaglia
1
+
Relational inductive biases, deep learning, and graph networks
2018
Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+
Unsupervised Meta-Learning for Reinforcement Learning
2018
Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
1
+
Modular meta-learning
2018
Ferran Alet
Tomás Lozano‐Pérez
Leslie Pack Kaelbling
1
+
Visual Reinforcement Learning with Imagined Goals
2018
Ashvin Nair
Vitchyr H. Pong
Murtaza Dalal
Shikhar Bahl
Steven Lin
Sergey Levine
1
+
Modular Networks: Learning to Decompose Neural Computation
2018
Louis Kirsch
Julius Kunze
David Barber
1
+
Systematic Generalization: What Is Required and Can It Be Learned?
2018
Dzmitry Bahdanau
Shikhar Murty
Michael Noukhovitch
Thien Huu Nguyen
Harm de Vries
Aaron Courville
1
+
Towards a Definition of Disentangled Representations
2018
Irina Higgins
David Amos
David Pfau
Sébastien Racanière
Löıc Matthey
Danilo Jimenez Rezende
Alexander Lerchner
1
+
Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis
2018
Rudy Bunel
Matthew Hausknecht
Jacob Devlin
Rishabh Singh
Pushmeet Kohli
1