Michael B. Chang

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Understanding Visual Concepts with Continuation Learning 2016 WILLIAM F. WHITNEY
Michael Chang
Tejas D. Kulkarni
Joshua B. Tenenbaum
2
+ Attend, Infer, Repeat: Fast Scene Understanding with Generative Models 2016 S. M. Ali Eslami
Nicolas Heess
Théophane Weber
Yuval Tassa
David Szepesvari
Koray Kavukcuoglu
Geoffrey E. Hinton
2
+ Neural Programmer-Interpreters 2015 Scott Reed
Nando de Freitas
2
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
2
+ Striving for Simplicity: The All Convolutional Net 2014 Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
1
+ rnn : Recurrent Library for Torch 2015 Nicholas Léonard
Sagar Waghmare
Yang Wang
Jin-Hwa Kim
1
+ Neural GPUs Learn Algorithms 2015 Łukasz Kaiser
Ilya Sutskever
1
+ On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models 2015 Juergen Schmidhuber
1
+ Learning to Compose Neural Networks for Question Answering 2016 Jacob Andreas
Marcus Rohrbach
Trevor Darrell
Dan Klein
1
+ Gated Graph Sequence Neural Networks 2016 Yujia Li
Daniel Tarlow
Marc Brockschmidt
Richard S. Zemel
1
+ Newtonian Image Understanding: Unfolding the Dynamics of Objects in Static Images 2015 Roozbeh Mottaghi
Hessam Bagherinezhad
Mohammad Rastegari
Ali Farhadi
1
+ Learning Visual Predictive Models of Physics for Playing Billiards 2015 Katerina Fragkiadaki
Pulkit Agrawal
Sergey Levine
Jitendra Malik
1
+ To Fall Or Not To Fall: A Visual Approach to Physical Stability Prediction 2016 Wenbin Li
Seyedmajid Azimi
Aleš Leonardis
Mario Fritz
1
+ Adaptive Computation Time for Recurrent Neural Networks 2016 Alex Graves
1
+ Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation 2016 Tejas D. Kulkarni
Karthik Narasimhan
Ardavan Saeedi
Joshua B. Tenenbaum
1
+ Learning to Poke by Poking: Experiential Learning of Intuitive Physics 2016 Pulkit Agrawal
Ashvin Nair
Pieter Abbeel
Jitendra Malik
Sergey Levine
1
+ TerpreT: A Probabilistic Programming Language for Program Induction 2016 Alexander L. Gaunt
Marc Brockschmidt
Rishabh Singh
Nate Kushman
Pushmeet Kohli
Jonathan M. Taylor
Daniel Tarlow
1
+ The Option-Critic Architecture 2016 Pierre‐Luc Bacon
Jean Harb
Doina Precup
1
+ Using Fast Weights to Attend to the Recent Past 2016 Jimmy Ba
Geoffrey E. Hinton
Volodymyr Mnih
Joel Z. Leibo
Catalin Ionescu
1
+ PDF Chat Inverse Compositional Spatial Transformer Networks 2017 Chen-Hsuan Lin
Simon Lucey
1
+ PathNet: Evolution Channels Gradient Descent in Super Neural Networks 2017 Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwólš
David Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
1
+ Differentiable Functional Program Interpreters 2016 John Feser
Marc Brockschmidt
Alexander L. Gaunt
Daniel Tarlow
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Making Neural Programming Architectures Generalize via Recursion 2017 Jonathon Cai
Richard Shin
Dawn Song
1
+ Metacontrol for Adaptive Imagination-Based Optimization 2017 Jessica B. Hamrick
Andrew J. Ballard
Razvan Pascanu
Oriol Vinyals
Nicolas Heess
Peter Battaglia
1
+ A simple neural network module for relational reasoning 2017 Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
1
+ Gradient Episodic Memory for Continual Learning 2017 David López-Paz
Marc’Aurelio Ranzato
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ Independently Controllable Factors 2017 Valentin Thomas
Jules Pondard
Emmanuel Bengio
Marc Sarfati
Philippe Beaudoin
Marie‐Jean Meurs
Joëlle Pineau
Doina Precup
Yoshua Bengio
1
+ Neural Task Programming: Learning to Generalize Across Hierarchical Tasks 2017 Danfei Xu
Suraj Nair
Yuke Zhu
Julian Gao
Animesh Garg
Li Fei-Fei
Silvio Savarese
1
+ Meta Learning Shared Hierarchies 2017 Kevin Frans
Jonathan Ho
Xi Chen
Pieter Abbeel
John Schulman
1
+ Learning to select computations 2017 Falk Lieder
Frederick Callaway
Sayan Gul
Paul M. Krueger
Thomas L. Griffiths
1
+ Learning Independent Causal Mechanisms 2017 Giambattista Parascandolo
Niki Kilbertus
Mateo Rojas-Carulla
Bernhard Schölkopf
1
+ Recasting Gradient-Based Meta-Learning as Hierarchical Bayes 2018 Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas L. Griffiths
1
+ Relational Neural Expectation Maximization: Unsupervised Discovery of Objects and their Interactions 2018 Sjoerd van Steenkiste
Michael Chang
Klaus Greff
Jürgen Schmidhuber
1
+ Towards Synthesizing Complex Programs from Input-Output Examples 2017 Xinyun Chen
Chang Liu
Dawn Song
1
+ A Simple Neural Attentive Meta-Learner 2017 Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
1
+ Memorize or generalize? Searching for a compositional RNN in a haystack 2018 Adam Liska
Germán Kruszewski
Marco Baroni
1
+ Meta-Reinforcement Learning of Structured Exploration Strategies 2018 Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
1
+ Synthesizing Programs for Images using Reinforced Adversarial Learning 2018 Yaroslav Ganin
Tejas Kulkarni
I. Babuschkin
S. M. Ali Eslami
Oriol Vinyals
1
+ Universal Planning Networks 2018 Aravind Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
1
+ Graph networks as learnable physics engines for inference and control 2018 Álvaro Sánchez‐González
Nicolas Heess
Jost Tobias Springenberg
Josh Merel
Martin Riedmiller
Raia Hadsell
Peter Battaglia
1
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+ Unsupervised Meta-Learning for Reinforcement Learning 2018 Abhishek Gupta
Benjamin Eysenbach
Chelsea Finn
Sergey Levine
1
+ Modular meta-learning 2018 Ferran Alet
Tomás Lozano‐Pérez
Leslie Pack Kaelbling
1
+ Visual Reinforcement Learning with Imagined Goals 2018 Ashvin Nair
Vitchyr H. Pong
Murtaza Dalal
Shikhar Bahl
Steven Lin
Sergey Levine
1
+ Modular Networks: Learning to Decompose Neural Computation 2018 Louis Kirsch
Julius Kunze
David Barber
1
+ Systematic Generalization: What Is Required and Can It Be Learned? 2018 Dzmitry Bahdanau
Shikhar Murty
Michael Noukhovitch
Thien Huu Nguyen
Harm de Vries
Aaron Courville
1
+ Towards a Definition of Disentangled Representations 2018 Irina Higgins
David Amos
David Pfau
Sébastien Racanière
Löıc Matthey
Danilo Jimenez Rezende
Alexander Lerchner
1
+ Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis 2018 Rudy Bunel
Matthew Hausknecht
Jacob Devlin
Rishabh Singh
Pushmeet Kohli
1