Anne Mottram

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Learning to Diagnose with LSTM Recurrent Neural Networks 2015 Zachary C. Lipton
David C. Kale
Charles Elkan
Randall C. Wetzel
1
+ RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism 2016 Edward Choi
Mohammad Taha Bahadori
Joshua A. Kulas
Andy Schuetz
Walter F. Stewart
Jimeng Sun
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection 2017 Joseph Futoma
Sanjay Hariharan
Mark Sendak
Nathan Brajer
Meredith E. Clement
Armando Bedoya
Cara Oā€™Brien
Katherine Heller
1
+ Attend and Diagnose: Clinical Time Series Analysis using Attention Models 2017 Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
1
+ A unified view of gradient-based attribution methods for Deep Neural Networks 2017 Marco Ancona
Enea Ceolini
Cengiz Ɩztireli
Markus GroƟ
1
+ What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use 2019 Sana Tonekaboni
Shalmali Joshi
Melissa D. McCradden
Anna Goldenberg
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ Counterfactual Reasoning for Fair Clinical Risk Prediction. 2019 Stephen Pfohl
Tony Duan
Daisy Yi Ding
Nigam H. Shah
1
+ Explaining Classifiers with Causal Concept Effect (CaCE) 2019 Yash Goyal
Amir Feder
Uri Shalit
Been Kim
1
+ Explaining an increase in predicted risk for clinical alerts 2019 Michaela Hardt
Alvin Rajkomar
Gerardo Flores
Andrew M. Dai
Michael Howell
Greg S. Corrado
Claire Cui
Moritz Hardt
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ Learning to Diagnose with LSTM Recurrent Neural Networks 2015 Zachary C. Lipton
David C. Kale
Charles Elkan
Randall Wetzell
1
+ RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism 2016 Edward Choi
Mohammad Taha Bahadori
Jimeng Sun
Joshua A. Kulas
Andy Schuetz
Walter F. Stewart
1
+ Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) 2017 Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda ViƩgas
Rory Sayres
1
+ PDF Chat Attend and Diagnose: Clinical Time Series Analysis Using Attention Models 2018 Huan Song
Deepta Rajan
Jayaraman J. Thiagarajan
Andreas Spanias
1
+ Explanation by Progressive Exaggeration 2019 Sumedha Singla
Brian P. Pollack
Junxiang Chen
Kayhan Batmanghelich
1
+ On Completeness-aware Concept-Based Explanations in Deep Neural Networks. 2019 Chihā€Kuan Yeh
Been Kim
Sercan Ɩ. Arık
Chunā€Liang Li
Tomas Pfister
Pradeep Ravikumar
1
+ Explaining an increase in predicted risk for clinical alerts 2020 Michaela Hardt
Alvin Rajkomar
Gerardo Flores
Andrew M. Dai
Michael D. Howell
Greg S. Corrado
Claire Cui
Moritz Hardt
1
+ PDF Chat Scalable and accurate deep learning with electronic health records 2018 Alvin Rajkomar
Eyal Oren
Kai Chen
Andrew M. Dai
Nissan Hajaj
Michaela Hardt
Peter J. Liu
Xiaobing Liu
Jake Marcus
Mimi Sun
1
+ PDF Chat DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning 2019 Benjamin Shickel
Tyler J. Loftus
Lasith Adhikari
Tezcan Ozrazgatā€Baslanti
Azra Bihorac
Parisa Rashidi
1
+ Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit 2021 Emma Rocheteau
PĆ­etro LiĆ³
Stephanie L. Hyland
1
+ Explanation by Progressive Exaggeration 2019 Sumedha Singla
Brian Pollack
Junxiang Chen
Kayhan Batmanghelich
1
+ Counterfactual Reasoning for Fair Clinical Risk Prediction 2019 Stephen Pfohl
Tony Duan
Daisy Yi Ding
Nigam H. Shah
1
+ An Improved Multi-Output Gaussian Process RNN with Real-Time Validation for Early Sepsis Detection 2017 Joseph Futoma
Sanjay Hariharan
Mark Sendak
Nathan Brajer
Meredith E. Clement
Armando Bedoya
Cara Oā€™Brien
Katherine Heller
1
+ Towards better understanding of gradient-based attribution methods for Deep Neural Networks 2017 Marco Ancona
Enea Ceolini
Cengiz Ɩztireli
Markus GroƟ
1