+
|
PKLM: A FLEXIBLE MCAR TEST USING CLASSIFICATION
|
2025
|
Meta-Lina Spohn
Jeffrey Näf
Loris Michel
Nicolai Meinshausen
|
+
|
Machine learning for exoplanet detection in high-contrast spectroscopy: Revealing exoplanets by leveraging hidden molecular signatures in cross-correlated spectra with convolutional neural networks
|
2024
|
Emily O. Garvin
Markus J. Bonse
Jean Hayoz
Gabriele Cugno
Jonas Spiller
Polychronis Patapis
D. J. M. Petit dit de la Roche
Rakesh Nath-Ranga
Olivier Absil
Nicolai Meinshausen
|
+
PDF
Chat
|
Machine Learning for Exoplanet Detection in High-Contrast Spectroscopy:
Revealing Exoplanets by Leveraging Hidden Molecular Signatures in
Cross-Correlated Spectra with Convolutional Neural Networks
|
2024
|
Emily O. Garvin
Markus J. Bonse
Jean Hayoz
Gabriele Cugno
Jonas Spiller
Polychronis Patapis
Dominique Roche
Rakesh Nath-Ranga
Olivier Absil
Nicolai Meinshausen
|
+
PDF
Chat
|
Distributional Principal Autoencoders
|
2024
|
Xinwei Shen
Nicolai Meinshausen
|
+
|
Imputation scores
|
2023
|
Jeffrey Näf
Meta-Lina Spohn
Loris Michel
Nicolai Meinshausen
|
+
|
Confidence and Uncertainty Assessment for Distributional Random Forests
|
2023
|
Jeffrey Näf
Corinne Emmenegger
Peter Bühlmann
Nicolai Meinshausen
|
+
|
Engression: Extrapolation for Nonlinear Regression?
|
2023
|
Xinwei Shen
Nicolai Meinshausen
|
+
PDF
Chat
|
ricu: R’s interface to intensive care data
|
2022
|
Nicolas Bennett
Drago Plečko
Ida-Fong Ukor
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
|
2022
|
Andrew Jesson
Alyson Douglas
Peter Manshausen
Nicolai Meinshausen
Philip Stier
Yarin Gal
Uri Shalit
|
+
|
Robust detection and attribution of climate change under interventions
|
2022
|
Enikő Székely
Sebastian Sippel
Nicolai Meinshausen
Guillaume Obozinski
Reto Knutti
|
+
|
fairadapt: Causal Reasoning for Fair Data Pre-processing.
|
2021
|
Drago Plečko
Nicolas Bennett
Nicolai Meinshausen
|
+
|
Proper Scoring Rules for Missing Value Imputation
|
2021
|
Loris Michel
Jeffrey Näf
Meta-Lina Spohn
Nicolai Meinshausen
|
+
PDF
Chat
|
Causal discovery in heavy-tailed models
|
2021
|
Nicola Gnecco
Nicolai Meinshausen
Jonas Peters
Sebastian Engelke
|
+
PDF
Chat
|
Anchor Regression: Heterogeneous Data Meet Causality
|
2021
|
Dominik Rothenhäusler
Nicolai Meinshausen
Peter Bühlmann
Jonas Peters
|
+
|
Predicting sepsis in multi-site, multi-national intensive care cohorts using deep learning
|
2021
|
Michael Moor
Nicolas Bennett
Drago Plečko
Max Horn
Bastian Rieck
Nicolai Meinshausen
Peter Bühlmann
Karsten Borgwardt
|
+
|
fairadapt: Causal Reasoning for Fair Data Pre-processing
|
2021
|
Drago Plečko
Nicolas Bennett
Nicolai Meinshausen
|
+
|
PKLM: A flexible MCAR test using Classification
|
2021
|
Loris Michel
Jeffrey Näf
Meta-Lina Spohn
Nicolai Meinshausen
|
+
|
Imputation Scores
|
2021
|
Jeffrey Näf
Meta-Lina Spohn
Loris Michel
Nicolai Meinshausen
|
+
|
ricu: R's Interface to Intensive Care Data
|
2021
|
Nicolas Bennett
Drago Plečko
Ida-Fong Ukor
Nicolai Meinshausen
Peter Bühlmann
|
+
PDF
Chat
|
Conditional variance penalties and domain shift robustness
|
2020
|
Christina Heinze‐Deml
Nicolai Meinshausen
|
+
|
Spectral Deconfounding via Perturbed Sparse Linear Models
|
2020
|
Domagoj Ćevid
Peter Bühlmann
Nicolai Meinshausen
|
+
|
Fair Data Adaptation with Quantile Preservation
|
2020
|
Drago Plečko
Nicolai Meinshausen
|
+
|
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression.
|
2020
|
Domagoj Ćevid
Loris Michel
Nicolai Meinshausen
Peter Bühlmann
|
+
PDF
Chat
|
Right Singular Vector Projection Graphs: Fast High Dimensional Covariance Matrix Estimation under Latent Confounding
|
2020
|
Rajen D. Shah
Benjamin Frot
Gian-Andrea Thanei
Nicolai Meinshausen
|
+
|
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
|
2020
|
Domagoj Ćevid
Loris Michel
Jeffrey Näf
Nicolai Meinshausen
Peter Bühlmann
|
+
|
High Probability Lower Bounds for the Total Variation Distance
|
2020
|
Loris Michel
Jeffrey Näf
Nicolai Meinshausen
|
+
|
Fair Data Adaptation with Quantile Preservation
|
2019
|
Drago Plečko
Nicolai Meinshausen
|
+
|
Causal discovery in heavy-tailed models
|
2019
|
Nicola Gnecco
Nicolai Meinshausen
Jonas Peters
Sebastian Engelke
|
+
|
Causal Dantzig: Fast inference in linear structural equation models with hidden variables under additive interventions
|
2019
|
Dominik Rothenhäusler
Peter Bühlmann
Nicolai Meinshausen
|
+
|
A direct approach to detection and attribution of climate change
|
2019
|
Enikő Székely
Sebastian Sippel
Reto Knutti
Guillaume Obozinski
Nicolai Meinshausen
|
+
|
Fair Data Adaptation with Quantile Preservation
|
2019
|
Drago Plečko
Nicolai Meinshausen
|
+
|
Causal discovery in heavy-tailed models
|
2019
|
Nicola Gnecco
Nicolai Meinshausen
Jonas Peters
Sebastian Engelke
|
+
|
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
|
2018
|
Rajen D. Shah
Benjamin Frot
Gian-Andrea Thanei
Nicolai Meinshausen
|
+
|
Invariant Causal Prediction for Nonlinear Models
|
2018
|
Christina Heinze‐Deml
Jonas Peters
Nicolai Meinshausen
|
+
|
CAUSALITY FROM A DISTRIBUTIONAL ROBUSTNESS POINT OF VIEW
|
2018
|
Nicolai Meinshausen
|
+
PDF
Chat
|
Symmetric rank covariances: a generalized framework for nonparametric measures of dependence
|
2018
|
Luca Weihs
Mathias Drton
Nicolai Meinshausen
|
+
|
Anchor regression: heterogeneous data meets causality
|
2018
|
Dominik Rothenhäusler
Peter Bühlmann
Nicolai Meinshausen
Jonas Peters
|
+
|
Spectral Deconfounding via Perturbed Sparse Linear Models
|
2018
|
Domagoj Ćevid
Peter Bühlmann
Nicolai Meinshausen
|
+
PDF
Chat
|
Preserving privacy between features in distributed estimation
|
2018
|
Christina Heinze‐Deml
Brian McWilliams
Nicolai Meinshausen
|
+
|
RSVP-graphs: Fast High-dimensional Covariance Matrix Estimation under Latent Confounding
|
2018
|
Rajen D. Shah
Benjamin Frot
Gian-Andrea Thanei
Nicolai Meinshausen
|
+
PDF
Chat
|
Causal Structure Learning
|
2017
|
Christina Heinze‐Deml
Marloes H. Maathuis
Nicolai Meinshausen
|
+
|
Guarding Against Adversarial Domain Shifts with Counterfactual Regularization.
|
2017
|
Christina Heinze‐Deml
Nicolai Meinshausen
|
+
|
Invariant Causal Prediction for Nonlinear Models
|
2017
|
Christina Heinze‐Deml
Jonas Peters
Nicolai Meinshausen
|
+
|
Causal Dantzig: fast inference in linear structural equation models with hidden variables under additive interventions
|
2017
|
Dominik Rothenhäusler
Peter Bühlmann
Nicolai Meinshausen
|
+
PDF
Chat
|
Random Projections for Large-Scale Regression
|
2017
|
Gian-Andrea Thanei
Christina Heinze
Nicolai Meinshausen
|
+
|
Symmetric Rank Covariances: a Generalised Framework for Nonparametric Measures of Dependence
|
2017
|
Luca Weihs
Mathias Drton
Nicolai Meinshausen
|
+
|
Causal Structure Learning
|
2017
|
Christina Heinze‐Deml
Marloes H. Maathuis
Nicolai Meinshausen
|
+
|
Random Projections For Large-Scale Regression
|
2017
|
Gian-Andrea Thanei
Christina Heinze
Nicolai Meinshausen
|
+
|
Causal Dantzig: fast inference in linear structural equation models with hidden variables under additive interventions
|
2017
|
Dominik Rothenhäusler
Peter Bühlmann
Nicolai Meinshausen
|
+
|
Conditional Variance Penalties and Domain Shift Robustness
|
2017
|
Christina Heinze‐Deml
Nicolai Meinshausen
|
+
|
Invariant Causal Prediction for Nonlinear Models
|
2017
|
Christina Heinze‐Deml
Jonas Peters
Nicolai Meinshausen
|
+
|
The xyz algorithm for fast interaction search in high-dimensional data
|
2016
|
Gian-Andrea Thanei
Nicolai Meinshausen
Rajen D. Shah
|
+
PDF
Chat
|
Causal Inference by using Invariant Prediction: Identification and Confidence Intervals
|
2016
|
Jonas Peters
Peter Bühlmann
Nicolai Meinshausen
|
+
PDF
Chat
|
Confidence Intervals for Maximin Effects in Inhomogeneous Large-Scale Data
|
2016
|
Dominik Rothenhäusler
Nicolai Meinshausen
Peter Bühlmann
|
+
PDF
Chat
|
Minimum Distance Lasso for robust high-dimensional regression
|
2016
|
Aurélie Lozano
Nicolai Meinshausen
Eunho Yang
|
+
|
Scalable Adaptive Stochastic Optimization Using Random Projections
|
2016
|
Gabriel Krummenacher
Brian McWilliams
Yannic Kilcher
Joachim M. Buhmann
Nicolai Meinshausen
|
+
|
Causal inference by using invariant prediction: identification and confidence intervals
|
2016
|
Jonas Peters
Peter Bühlmann
Nicolai Meinshausen
|
+
|
The xyz algorithm for fast interaction search in high-dimensional data
|
2016
|
Gian-Andrea Thanei
Nicolai Meinshausen
Rajen D. Shah
|
+
PDF
Chat
|
Magging: Maximin Aggregation for Inhomogeneous Large-Scale Data
|
2015
|
Peter Bühlmann
Nicolai Meinshausen
|
+
|
High-Dimensional Inference: Confidence Intervals, $p$-Values and R-Software hdi
|
2015
|
Ruben Dezeure
Peter Bühlmann
Lukas Meier
Nicolai Meinshausen
|
+
|
Maximin effects in inhomogeneous large-scale data
|
2015
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
|
2015
|
Christina Heinze
Brian McWilliams
Nicolai Meinshausen
|
+
|
Causal inference using invariant prediction: identification and confidence intervals
|
2015
|
Jonas Peters
Peter Bühlmann
Nicolai Meinshausen
|
+
|
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
|
2015
|
Christina Heinze
Brian McWilliams
Nicolai Meinshausen
|
+
|
backShift: Learning causal cyclic graphs from unknown shift interventions
|
2015
|
Dominik Rothenhäusler
Christina Heinze
Jonas Peters
Nicolai Meinshausen
|
+
|
Confidence Intervals for Maximin Effects in Inhomogeneous Large-Scale Data
|
2015
|
Dominik Rothenhäusler
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Causal inference using invariant prediction: identification and confidence intervals
|
2015
|
Jonas Peters
Peter Bühlmann
Nicolai Meinshausen
|
+
PDF
Chat
|
Group Bound: Confidence Intervals for Groups of Variables in Sparse High Dimensional Regression Without Assumptions on the Design
|
2014
|
Nicolai Meinshausen
|
+
|
Magging: maximin aggregation for inhomogeneous large-scale data
|
2014
|
Peter Bühlmann
Nicolai Meinshausen
|
+
|
LOCO: Distributing Ridge Regression with Random Projections
|
2014
|
Christina Heinze
Brian McWilliams
Nicolai Meinshausen
Gabriel Krummenacher
|
+
|
Magging: maximin aggregation for inhomogeneous large-scale data
|
2014
|
Peter Bühlmann
Nicolai Meinshausen
|
+
|
Assumption-free confidence intervals for groups of variables in sparse high-dimensional regression
|
2013
|
Nicolai Meinshausen
|
+
|
Group-bound: confidence intervals for groups of variables in sparse high-dimensional regression without assumptions on the design
|
2013
|
Nicolai Meinshausen
|
+
|
Min-wise hashing for large-scale regression and classication with sparse data
|
2013
|
Rajen D. Shah
Nicolai Meinshausen
|
+
|
Minimum Distance Estimation for Robust High-Dimensional Regression
|
2013
|
Aurélie Lozano
Nicolai Meinshausen
|
+
|
Random Intersection Trees
|
2013
|
Rajen D. Shah
Nicolai Meinshausen
|
+
|
Discussion of Grouping Strategies and Thresholding for High Dimension Linear Models
|
2013
|
Nicolai Meinshausen
|
+
|
On b-bit min-wise hashing for large-scale regression and classification with sparse data
|
2013
|
Rajen D. Shah
Nicolai Meinshausen
|
+
PDF
Chat
|
Sign-constrained least squares estimation for high-dimensional regression
|
2013
|
Nicolai Meinshausen
|
+
|
Group-bound: confidence intervals for groups of variables in sparse high-dimensional regression without assumptions on the design
|
2013
|
Nicolai Meinshausen
|
+
|
Random Intersection Trees
|
2013
|
Rajen D. Shah
Nicolai Meinshausen
|
+
|
Minimum Distance Estimation for Robust High-Dimensional Regression
|
2013
|
Aurélie Lozano
Nicolai Meinshausen
|
+
|
Discussion: Latent variable graphical model selection via convex optimization
|
2012
|
Steffen L. Lauritzen
Nicolai Meinshausen
|
+
|
Sign-constrained least squares estimation for high-dimensional regression
|
2012
|
Nicolai Meinshausen
|
+
|
Sign-constrained least squares estimation for high-dimensional regression
|
2012
|
Nicolai Meinshausen
|
+
|
Asymptotic optimality of the Westfall–Young permutation procedure for multiple testing under dependence
|
2011
|
Nicolai Meinshausen
Marloes H. Maathuis
Peter Bühlmann
|
+
PDF
Chat
|
Discussion of “Multiple Testing for Exploratory Research” by J. J. Goeman and A. Solari
|
2011
|
Nicolai Meinshausen
|
+
PDF
Chat
|
LASSO Isotone for High-Dimensional Additive Isotonic Regression
|
2011
|
Zhou Fang
Nicolai Meinshausen
|
+
|
Optimality of the Westfall-Young permutation procedure for multiple testing under dependence
|
2011
|
Nicolai Meinshausen
Marloes H. Maathuis
|
+
PDF
Chat
|
Node harvest
|
2010
|
Nicolai Meinshausen
|
+
PDF
Chat
|
Stability Selection
|
2010
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
LASSO ISOtone for High Dimensional Additive Isotonic Regression
|
2010
|
Zhou Fang
Nicolai Meinshausen
|
+
PDF
Chat
|
<i>p</i>-Values for High-Dimensional Regression
|
2009
|
Nicolai Meinshausen
Lukas Meier
Peter Bühlmann
|
+
|
Node harvest: simple and interpretable regression and classication
|
2009
|
Nicolai Meinshausen
|
+
PDF
Chat
|
Efficient blind search: Optimal power of detection under computational cost constraints
|
2009
|
Nicolai Meinshausen
Peter J. Bickel
John Rice
|
+
PDF
Chat
|
Lasso-type recovery of sparse representations for high-dimensional data
|
2009
|
Nicolai Meinshausen
Bin Yu
|
+
PDF
Chat
|
Forest Garrote
|
2009
|
Nicolai Meinshausen
|
+
|
Forest Garrote
|
2009
|
Nicolai Meinshausen
|
+
|
Stability Selection
|
2008
|
Nicolai Meinshausen
Peter Buehlmann
|
+
PDF
Chat
|
Discussion of: Treelets—An adaptive multi-scale basis for sparse unordered data
|
2008
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Hierarchical testing of variable importance
|
2008
|
Nicolai Meinshausen
|
+
|
P-values for high-dimensional regression
|
2008
|
Nicolai Meinshausen
Lukas Meier
Peter Bühlmann
|
+
|
Discussion of: Treelets--An adaptive multi-scale basis for sparse unordered data
|
2008
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Stability Selection
|
2008
|
Nicolai Meinshausen
Peter Buehlmann
|
+
PDF
Chat
|
Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig
|
2007
|
Nicolai Meinshausen
Guilherme V. Rocha
Bin Yu
|
+
|
A note on the Lasso for Gaussian graphical model selection
|
2007
|
Nicolai Meinshausen
|
+
|
Relaxed Lasso
|
2006
|
Nicolai Meinshausen
|
+
|
Quantile Regression Forests
|
2006
|
Nicolai Meinshausen
|
+
PDF
Chat
|
Search for small trans-Neptunian objects by the TAOS project
|
2006
|
W. P. Chen
Charles Alcock
T. S. Axelrod
Federica Bianco
Y.‐I. Byun
Yuan Chang
K. H. Cook
R. Dave
J. Giammarco
D. W. Kim
|
+
|
High-dimensional graphs and variable selection with the Lasso
|
2006
|
Nicolai Meinshausen
Peter Bühlmann
|
+
PDF
Chat
|
Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses
|
2006
|
Nicolai Meinshausen
John Rice
|
+
|
Testing for monotonicity in the Hubble diagram
|
2006
|
Nicolai Meinshausen
John P. Rice
Thomas Schücker
|
+
|
False Discovery Control for Multiple Tests of Association Under General Dependence
|
2005
|
Nicolai Meinshausen
|
+
PDF
Chat
|
Lower bounds for the number of false null hypotheses for multiple testing of associations under general dependence structures
|
2005
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Lasso with relaxation
|
2005
|
Nicolai Meinshausen
|
+
|
Consistent neighbourhood selection for sparse high-dimensional graphs with the Lasso
|
2004
|
Nicolai Meinshausen
Peter Bühlmann
|
+
|
Upper bounds for the number of true null hypotheses and novel estimates for error rates in multiple testing
|
2004
|
Nicolai Meinshausen
Peter Bühlmann
|