+
PDF
Chat
|
Large Deviations Inequalities for Unequal Probability Sampling Without
Replacement
|
2024
|
Dean P. Foster
Sergiu Hart
|
+
PDF
Chat
|
How Does Critical Batch Size Scale in Pre-training?
|
2024
|
Hanlin Zhang
Depen Morwani
Nikhil Vyas
J. Wu
Difan Zou
Udaya Ghai
Dean P. Foster
Sham M. Kakade
|
+
PDF
Chat
|
Neural Coordination and Capacity Control for Inventory Management
|
2024
|
Carson Eisenach
Udaya Ghai
Dhruv Madeka
Kari Torkkola
Dean P. Foster
Sham M. Kakade
|
+
PDF
Chat
|
A Study on the Calibration of In-context Learning
|
2024
|
Hanlin Zhang
Yifan Zhang
Yaodong Yu
Dhruv Madeka
Dean P. Foster
Eric P. Xing
Himabindu Lakkaraju
Sham M. Kakade
|
+
|
On the Complexity of Multi-Agent Decision Making: From Learning in Games to Partial Monitoring
|
2023
|
Dylan J. Foster
Dean P. Foster
Noah Golowich
Alexander Rakhlin
|
+
|
Scaling Laws for Imitation Learning in NetHack
|
2023
|
Jens Tuyls
Dhruv Madeka
Kari Torkkola
Dean P. Foster
Karthik Narasimhan
Sham M. Kakade
|
+
|
Contextual Bandits for Evaluating and Improving Inventory Control Policies
|
2023
|
Dean P. Foster
Randy Jia
Dhruv Madeka
|
+
|
Learning an Inventory Control Policy with General Inventory Arrival Dynamics
|
2023
|
Sohrab Andaz
Carson Eisenach
Dhruv Madeka
Kari Torkkola
Randy Jia
Dean P. Foster
Sham M. Kakade
|
+
|
“Calibeating”: Beating forecasters at their own game
|
2023
|
Dean P. Foster
Sergiu Hart
|
+
|
A Study on the Calibration of In-context Learning
|
2023
|
Hanlin Zhang
Yifan Zhang
Yaodong Yu
Dhruv Madeka
Dean P. Foster
Eric P. Xing
Hima Lakkaraju
Sham M. Kakade
|
+
|
AI safety by debate via regret minimization
|
2023
|
Xinyi Chen
Angelica Chen
Dean P. Foster
Elad Hazan
|
+
PDF
Chat
|
Impartial Predictive Modeling and the Use of Proxy Variables
|
2022
|
Kory D. Johnson
Dean P. Foster
Robert A. Stine
|
+
|
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation
|
2022
|
Philip Amortila
Nan Jiang
Dhruv Madeka
Dean P. Foster
|
+
|
"Calibeating": Beating Forecasters at Their Own Game
|
2022
|
Dean P. Foster
Sergiu Hart
|
+
|
Linear Reinforcement Learning with Ball Structure Action Space
|
2022
|
Zeyu Jia
Randy Jia
Dhruv Madeka
Dean P. Foster
|
+
|
Deep Inventory Management
|
2022
|
Dhruv Madeka
Kari Torkkola
Carson Eisenach
Anna Luo
Dean P. Foster
Sham M. Kakade
|
+
PDF
Chat
|
Assessment of Treatment Effect Estimators for Heavy-Tailed Data
|
2021
|
Nilesh Tripuraneni
Dhruv Madeka
Dean P. Foster
Dominique Perrault-Joncas
Michael I. Jordan
|
+
|
The Benefits of Implicit Regularization from SGD in Least Squares Problems
|
2021
|
Difan Zou
Jingfeng Wu
Vladimir Braverman
Quanquan Gu
Dean P. Foster
Sham M. Kakade
|
+
PDF
Chat
|
On Submodular Contextual Bandits
|
2021
|
Dean P. Foster
Alexander Rakhlin
|
+
PDF
Chat
|
Forecast Hedging and Calibration
|
2021
|
Dean P. Foster
Sergiu Hart
|
+
|
Single-Index Models in the High Signal Regime
|
2021
|
Ashwin Pananjady
Dean P. Foster
|
+
|
Variance Reduction in Training Forecasting Models with Subgroup Sampling.
|
2021
|
Yucheng Lu
Youngsuk Park
Lifan Chen
Yuyang Wang
Christopher De
Dean P. Foster
|
+
PDF
Chat
|
Variance Reduced Training with Stratified Sampling for Forecasting
Models
|
2021
|
Yucheng Lu
Youngsuk Park
Lifan Chen
Yuyang Wang
Christopher De
Dean P. Foster
|
+
|
Threshold Martingales and the Evolution of Forecasts
|
2021
|
Dean P. Foster
Robert A. Stine
|
+
|
Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy
|
2021
|
Rajat Sen
Alexander Rakhlin
Lexing Ying
Rahul Kidambi
Dean P. Foster
Daniel Hill
Inderjit S. Dhillon
|
+
|
Variance Reduced Training with Stratified Sampling for Forecasting Models
|
2021
|
Yucheng Lu
Youngsuk Park
Lifan Chen
Yuyang Wang
Christopher De
Dean P. Foster
|
+
|
The Benefits of Implicit Regularization from SGD in Least Squares Problems
|
2021
|
Difan Zou
Jingfeng Wu
Vladimir Braverman
Quanquan Gu
Dean P. Foster
Sham M. Kakade
|
+
|
Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data
|
2021
|
Nilesh Tripuraneni
Dhruv Madeka
Dean P. Foster
Dominique Perrault-Joncas
Michael I. Jordan
|
+
|
On Submodular Contextual Bandits
|
2021
|
Dean P. Foster
Alexander Rakhlin
|
+
|
PACT: Privacy Sensitive Protocols and Mechanisms for Mobile Contact Tracing
|
2020
|
Justin Chan
Dean P. Foster
Shyam Gollakota
Eric Horvitz
Joseph Jaeger
Sham Kakade
Tadayoshi Kohno
John Langford
Jonathan Larson
Puneet Sharma
|
+
|
What are the Statistical Limits of Offline RL with Linear Function Approximation?
|
2020
|
Ruosong Wang
Dean P. Foster
Sham M. Kakade
|
+
|
Deep Factors for Forecasting
|
2019
|
Yuyang Wang
Alex Smola
Danielle C. Maddix
Jan Gasthaus
Dean P. Foster
Tim Januschowski
|
+
|
Dynamic Local Regret for Non-convex Online Forecasting
|
2019
|
Sergül Aydöre
Tianhao Zhu
Dean P. Foster
|
+
PDF
Chat
|
Invariances and Data Augmentation for Supervised Music Transcription
|
2018
|
John Thickstun
Zaïd Harchaoui
Dean P. Foster
Sham M. Kakade
|
+
PDF
Chat
|
Smooth calibration, leaky forecasts, finite recall, and Nash dynamics
|
2018
|
Dean P. Foster
Sergiu Hart
|
+
|
Coupled Recurrent Models for Polyphonic Music Composition
|
2018
|
John Thickstun
Zaïd Harchaoui
Dean P. Foster
Sham M. Kakade
|
+
|
A Local Regret in Nonconvex Online Learning
|
2018
|
Sergül Aydöre
Lee H. Dicker
Dean P. Foster
|
+
|
Invariances and Data Augmentation for Supervised Music Transcription
|
2017
|
John Thickstun
Zaïd Harchaoui
Dean P. Foster
Sham M. Kakade
|
+
|
Kernel ridge vs. principal component regression: Minimax bounds and the qualification of regularization operators
|
2017
|
Lee H. Dicker
Dean P. Foster
Daniel Hsu
|
+
|
Invariances and Data Augmentation for Supervised Music Transcription
|
2017
|
John Thickstun
Zaïd Harchaoui
Dean P. Foster
Sham M. Kakade
|
+
|
Impartial Predictive Modeling: Ensuring Group Fairness in Arbitrary Models
|
2016
|
Kory D. Johnson
Dean P. Foster
Robert A. Stine
|
+
|
Online Sparse Linear Regression
|
2016
|
Dean P. Foster
Satyen Kale
Howard Karloff
|
+
|
On Optimal Retirement (How to Retire Early)
|
2016
|
Philip Ernst
Dean P. Foster
L. A. Shepp
|
+
|
Online Sparse Linear Regression
|
2016
|
Dean P. Foster
Satyen Kale
Howard Karloff
|
+
PDF
Chat
|
Orbiting radiation stars
|
2016
|
Dean P. Foster
John Langford
Gabe Perez-Giz
|
+
|
Semantic Word Clusters Using Signed Normalized Graph Cuts
|
2016
|
João Sedoc
Jean Gallier
Lyle Ungar
Dean P. Foster
|
+
|
Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators
|
2016
|
Lee H. Dicker
Dean P. Foster
Daniel Hsu
|
+
|
Online Sparse Linear Regression
|
2016
|
Dean P. Foster
Satyen Kale
Howard Karloff
|
+
|
Semantic Word Clusters Using Signed Normalized Graph Cuts
|
2016
|
João Sedoc
Jean Gallier
Lyle Ungar
Dean P. Foster
|
+
|
On Optimal Retirement (How to Retire Early)
|
2016
|
Philip Ernst
Dean P. Foster
L. A. Shepp
|
+
|
Impartial Predictive Modeling and the Use of Proxy Variables
|
2016
|
Kory D. Johnson
Dean P. Foster
Robert A. Stine
|
+
|
Submodularity in Statistics: Comparing the Success of Model Selection Methods
|
2015
|
Kory D. Johnson
Robert A. Stine
Dean P. Foster
|
+
|
Revisiting Alpha-Investing: Conditionally Valid Stepwise Regression
|
2015
|
Kory D. Johnson
Robert A. Stine
Dean P. Foster
|
+
|
Finding Linear Structure in Large Datasets with Scalable Canonical Correlation Analysis
|
2015
|
Zhuang Ma
Yichao Lu
Dean P. Foster
|
+
|
Adaptive Monotone Shrinkage for Regression
|
2015
|
Zhuang Ma
Dean P. Foster
Robert A. Stine
|
+
|
Finding Linear Structure in Large Datasets with Scalable Canonical Correlation Analysis
|
2015
|
Zhuang Ma
Yichao Lu
Dean P. Foster
|
+
|
A Risk Ratio Comparison of $l_0$ and $l_1$ Penalized Regression
|
2015
|
Kory D. Johnson
Dongyu Lin
Lyle Ungar
Dean P. Foster
Robert A. Stine
|
+
|
Fitting High-Dimensional Interaction Models with Error Control
|
2015
|
Kory D. Johnson
Robert A. Stine
Dean P. Foster
|
+
|
Adaptive Monotone Shrinkage for Regression
|
2015
|
Zhuang Ma
Dean P. Foster
Robert A. Stine
|
+
|
Submodularity in Statistics: Comparing the Success of Model Selection Methods
|
2015
|
Kory D. Johnson
Robert A. Stine
Dean P. Foster
|
+
|
Large scale canonical correlation analysis with iterative least squares
|
2014
|
Yichao Lu
Dean P. Foster
|
+
PDF
Chat
|
A Spectral Algorithm for Latent Dirichlet Allocation
|
2014
|
Anima Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
|
+
|
Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent
|
2014
|
Yichao Lu
Dean P. Foster
|
+
|
{A Level-set Hit-and-run Sampler for Quasi-Concave Distributions}
|
2014
|
Shane T. Jensen
Dean P. Foster
|
+
|
Variable Selection is Hard
|
2014
|
Dean P. Foster
Howard Karloff
Justin Thaler
|
+
|
Large scale canonical correlation analysis with iterative least squares
|
2014
|
Yichao Lu
Dean P. Foster
|
+
|
Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent
|
2014
|
Yichao Lu
Dean P. Foster
|
+
|
One-shot learning and big data with n=2
|
2013
|
Lee H. Dicker
Dean P. Foster
|
+
PDF
Chat
|
Negative baryon density and the folding structure of the<i>B</i>= 3 skyrmion
|
2013
|
Dean P. Foster
Steffen Krusch
|
+
|
A risk comparison of ordinary least squares vs ridge regression
|
2013
|
Paramveer S. Dhillon
Dean P. Foster
Sham M. Kakade
Lyle Ungar
|
+
PDF
Chat
|
Stochastic Convex Optimization with Bandit Feedback
|
2013
|
Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
|
+
|
Two SVDs Suffice: Spectral decompositions for probabilistic topic modeling and latent Dirichlet allocation
|
2012
|
Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
|
+
|
Spectral dimensionality reduction for HMMs
|
2012
|
Dean P. Foster
Jordan Rodu
Lyle Ungar
|
+
|
Optimal Weighting of Multi-View Data with Low Dimensional Hidden States
|
2012
|
Yichao Lu
Dean P. Foster
|
+
|
Two Step CCA: A new spectral method for estimating vector models of words
|
2012
|
Paramveer S. Dhillon
Jordan Rodu
Dean P. Foster
Lyle Ungar
|
+
|
A Level-Set Hit-and-Run Sampler for Quasi-Concave Distributions
|
2012
|
Dean P. Foster
Shane T. Jensen
|
+
|
A Spectral Algorithm for Latent Dirichlet Allocation
|
2012
|
Animashree Anandkumar
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Yi-Kai Liu
|
+
|
Spectral dimensionality reduction for HMMs
|
2012
|
Dean P. Foster
Jordan Rodu
Lyle Ungar
|
+
|
Complexity-Based Approach to Calibration With Checking Rules
|
2011
|
Dean P. Foster
Alexander Rakhlin
Karthik Sridharan
Ambuj Tewari
|
+
|
Stochastic convex optimization with bandit feedback
|
2011
|
Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
|
+
|
The effect of winning an Oscar Award on survival: Correcting for healthy performer survivor bias with a rank preserving structural accelerated failure time model
|
2011
|
Xu Han
Dylan S. Small
Dean P. Foster
Vishal Patel
|
+
PDF
Chat
|
VIF Regression: A Fast Regression Algorithm for Large Data
|
2011
|
Dongyu Lin
Dean P. Foster
Lyle Ungar
|
+
|
Domain Adaptation: Overfitting and Small Sample Statistics
|
2011
|
Dean P. Foster
Sham M. Kakade
Ruslan Salakhutdinov
|
+
|
No Internal Regret via Neighborhood Watch
|
2011
|
Dean P. Foster
Alexander Rakhlin
|
+
|
A Risk Comparison of Ordinary Least Squares vs Ridge Regression
|
2011
|
Paramveer S. Dhillon
Dean P. Foster
Sham M. Kakade
Lyle Ungar
|
+
|
Stochastic convex optimization with bandit feedback
|
2011
|
Alekh Agarwal
Dean P. Foster
Daniel Hsu
Sham M. Kakade
Alexander Rakhlin
|
+
|
Statistics for Business: Decision Making and Analysis
|
2010
|
Robert A. Stine
Dean P. Foster
|
+
PDF
Chat
|
VIF Regression: A Fast Regression Algorithm for Large Data
|
2009
|
Dongyu Lin
Dean P. Foster
|
+
PDF
Chat
|
Information Consistency of Nonparametric Gaussian Process Methods
|
2008
|
Matthias Seeger
Sham M. Kakade
Dean P. Foster
|
+
PDF
Chat
|
<i>α</i>-Investing: a Procedure for Sequential Control of Expected False Discoveries
|
2008
|
Dean P. Foster
Robert A. Stine
|
+
|
Multi-View Dimensionality Reduction via Canonical Correlation Analysis
|
2008
|
Dean P. Foster
Sham M. Kakade
Tong Zhang
|
+
|
Multi-view Regression Via Canonical Correlation Analysis
|
2007
|
Sham M. Kakade
Dean P. Foster
|
+
PDF
Chat
|
Honest confidence intervals for the error variance in stepwise regression
|
2006
|
Dean P. Foster
Robert A. Stine
|
+
|
Polyshrink: An Adaptive Variable Selection Procedure That Is Competitive with Bayes Experts
|
2005
|
Dean P. Foster
Robert A. Stine
|
+
PDF
Chat
|
Discussion of Hugh Chipman, Edward I. George and Robert E. McCulloch, "The Practical Implementation of Bayesian Model Selection"
|
2001
|
Dean P. Foster
Robert A. Stine
|
+
PDF
Chat
|
Calibration and empirical Bayes variable selection
|
2000
|
Edward I. George
Dean P. Foster
|
+
|
Confounding Effects in Tests: A Case Study
|
1998
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Prediction and confidence intervals in regression
|
1998
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Collinearity
|
1998
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Multiple regression
|
1998
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Fitting Equations to Data
|
1998
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Confounding Effects in Tests: A Case Study
|
1997
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
|
Confidence Intervals
|
1997
|
Dean P. Foster
Robert A. Stine
Richard P. Waterman
|
+
PDF
Chat
|
Continuous Record Asymptotics for Rolling Sample Variance Estimators*
|
1996
|
Dean P. Foster
Daniel B. Nelson
|
+
|
Asymptotic Filtering Theory for Univariate Arch Models*
|
1996
|
Daniel B. Nelson
Dean P. Foster
|
+
PDF
Chat
|
The Risk Inflation Criterion for Multiple Regression
|
1994
|
Dean P. Foster
Edward I. George
|
+
|
Asypmtotic Filtering Theory for Univariate Arch Models
|
1994
|
Daniel B. Nelson
Dean P. Foster
|
+
|
Asypmtotic Filtering Theory for Univariate Arch Models
|
1994
|
Daniel B. Nelson
Dean P. Foster
|
+
|
Asypmtotic Filtering Theory for Univariate Arch Models
|
1994
|
Daniel B. Nelson
Dean P. Foster
|
+
PDF
Chat
|
Estimation up to a Change-Point
|
1993
|
Dean P. Foster
Edward I. George
|