Xueying Zhan

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ Bayesian Active Learning for Classification and Preference Learning 2011 Neil Houlsby
Ferenc HuszĂĄr
Zoubin Ghahramani
Måté Lengyel
1
+ Training with Noise is Equivalent to Tikhonov Regularization 1995 Chris Bishop
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat The Cityscapes Dataset for Semantic Urban Scene Understanding 2016 Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1
+ Active Learning for Speech Recognition: the Power of Gradients 2016 Jiaji Huang
Rewon Child
Vinay Rao
Hairong Liu
Sanjeev Satheesh
Adam Coates
1
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
1
+ Cost-Effective Active Learning for Melanoma Segmentation 2017 Marc GĂłrriz Blanch
Xavier GirĂł-i-Nieto
Axel Carlier
Emmanuel Faure
1
+ Active Learning for Convolutional Neural Networks: A Core-Set Approach 2017 Ozan ƞener
Silvio Savarese
1
+ Adversarial Active Learning for Deep Networks: a Margin Based Approach 2018 MĂ©lanie Ducoffe
Fƕed́eric Precioso
1
+ PDF Chat Cost-Sensitive Active Learning for Intracranial Hemorrhage Detection 2018 Weicheng Kuo
Christian HĂ€ne
Esther L. Yuh
Pratik Mukherjee
Jitendra Malik
1
+ Deep Batch Active Learning by Diverse, Uncertain Gradient Lower Bounds 2019 Jordan T. Ash
Chicheng Zhang
Akshay Krishnamurthy
John Langford
Alekh Agarwal
1
+ Learning Active Learning from Data 2017 Ksenia Konyushkova
Raphael Sznitman
Pascal Fua
1
+ BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning 2019 Andreas Kirsch
Joost van Amersfoort
Yarin Gal
1
+ Deep Bayesian Active Learning with Image Data 2017 Yarin Gal
Riashat Islam
Zoubin Ghahramani
1
+ PDF Chat Learning Loss for Active Learning 2019 Donggeun Yoo
In So Kweon
1
+ Determinantal Point Processes for Mini-Batch Diversification 2017 Cheng Zhang
Hedvig Kjellström
Stephan Mandt
1
+ Stronger generalization bounds for deep nets via a compression approach 2018 Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
1
+ PDF Chat DeepPicker: A deep learning approach for fully automated particle picking in cryo-EM 2016 Feng Wang
Huichao Gong
Gaochao Liu
Meijing Li
Chuangye Yan
Tian Xia
Xueming Li
Jianyang Zeng
1
+ PDF Chat Active Discriminative Text Representation Learning 2017 Ye Zhang
Matthew Lease
Byron Wallace
1
+ PDF Chat Variational Adversarial Active Learning 2019 Samrath Sinha
Sayna Ebrahimi
Trevor Darrell
1
+ PDF Chat Adversarial Sampling for Active Learning 2020 Christoph Mayer
Radu Timofte
1
+ PDF Chat State-Relabeling Adversarial Active Learning 2020 Beichen Zhang
Liang Li
Shijie Yang
Shuhui Wang
Zheng-Jun Zha
Qingming Huang
1
+ PDF Chat A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy 2017 Yanan Zhu
Qi Ouyang
Youdong Mao
1
+ PDF Chat A General Framework for Uncertainty Estimation in Deep Learning 2020 Antonio Loquercio
Mattia SegĂč
Davide Scaramuzza
1
+ PDF Chat Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs 2019 Tristan Bepler
Andrew Morin
Micah Rapp
Julia Brasch
Lawrence Shapiro
Alex J. Noble
Bonnie Berger
1
+ Scalable Marginal Likelihood Estimation for Model Selection in Deep Learning 2021 Alexander Immer
Matthias Bauer
Vincent Fortuin
Gunnar RĂ€tsch
Khan Emtiyaz
1
+ Gone Fishing: Neural Active Learning with Fisher Embeddings. 2021 Jordan T. Ash
Surbhi Goel
Akshay Krishnamurthy
Sham M. Kakade
1
+ PDF Chat Sequential Graph Convolutional Network for Active Learning 2021 Razvan Caramalau
Binod Bhattarai
Tae‐Kyun Kim
1
+ Batch Active Learning at Scale 2021 Gui Citovsky
Giulia DeSalvo
Claudio Gentile
Lazaros Karydas
Anand Rajagopalan
Afshin Rostamizadeh
Sanjiv Kumar
1
+ PDF Chat Influence Selection for Active Learning 2021 Zhuoming Liu
Hao Ding
Huaping Zhong
Weijia Li
Jifeng Dai
Conghui He
1
+ PDF Chat Boosting Active Learning via Improving Test Performance 2022 Tianyang Wang
Xingjian Li
Pengkun Yang
Guosheng Hu
Xiangrui Zeng
Siyu Huang
Cheng‐Zhong Xu
Min Xu
1
+ Bayesian Deep Learning via Subnetwork Inference 2020 Erik Daxberger
Eric Nalisnick
James Urquhart Allingham
Javier AntorĂĄn
José Miguel Hernåndez-Lobato
1
+ Active Learning with Statistical Models 1996 D. A. Cohn
Z. Ghahramani
M. I. Jordan
1
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
1