Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Ayan Majumdar
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Do Invariances in Deep Neural Networks Align with Human Perception?
2023
Vedant Nanda
Ayan Majumdar
Camila Kolling
John P. Dickerson
Krishna P. Gummadi
Bradley C. Love
Adrian Weller
+
PDF
Chat
Don’t Throw it Away! The Utility of Unlabeled Data in Fair Decision Making
2022
Miriam Rateike
Ayan Majumdar
Olga Mineeva
Krishna P. Gummadi
Isabel Valera
+
Exploring Alignment of Representations with Human Perception
2021
Vedant Nanda
Ayan Majumdar
Camila Kolling
John P. Dickerson
Krishna P. Gummadi
Bradley C. Love
Adrian Weller
+
Do Invariances in Deep Neural Networks Align with Human Perception?
2021
Vedant Nanda
Ayan Majumdar
Camila Kolling
John P. Dickerson
Krishna P. Gummadi
Bradley C. Love
Adrian Weller
Common Coauthors
Coauthor
Papers Together
Krishna P. Gummadi
4
Bradley C. Love
3
John P. Dickerson
3
Adrian Weller
3
Vedant Nanda
3
Camila Kolling
3
Olga Mineeva
1
Miriam Rateike
1
Isabel Valera
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Understanding Deep Image Representations by Inverting Them
2014
Aravindh Mahendran
Andrea Vedaldi
2
+
PDF
Chat
Controversial stimuli: Pitting neural networks against each other as models of human cognition
2020
Tal Golan
Prashant C. Raju
Nikolaus Kriegeskorte
2
+
PDF
Chat
Enriching ImageNet with Human Similarity Judgments and Psychological Embeddings
2021
Brett D. Roads
Bradley C. Love
2
+
Theoretically Principled Trade-off between Robustness and Accuracy
2019
Hongyang Zhang
Yaodong Yu
Jiantao Jiao
Eric P. Xing
Laurent El Ghaoui
Michael I. Jordan
2
+
Adversarial Self-Supervised Contrastive Learning
2020
Minseon Kim
Jihoon Tack
Sung Ju Hwang
2
+
Ensemble Adversarial Training: Attacks and Defenses
2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
2
+
Are Perceptually-Aligned Gradients a General Property of Robust Classifiers?
2019
Simran Kaur
Jeremy M. Cohen
Zachary C. Lipton
2
+
Explaining and Harnessing Adversarial Examples
2014
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
2
+
Towards Deep Neural Network Architectures Robust to Adversarial Examples
2014
Shixiang Gu
Luca Rigazio
2
+
A Simple Framework for Contrastive Learning of Visual Representations
2020
Ting Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
2
+
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
2018
Anish Athalye
Nicholas Carlini
David Wagner
1
+
PDF
Chat
Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations
2018
Joshua C. Peterson
Joshua T. Abbott
Thomas L. Griffiths
1
+
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
2017
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda Viégas
Rory Sayres
1
+
Insights on representational similarity in neural networks with canonical correlation
2018
Ari S. Morcos
Maithra Raghu
Samy Bengio
1
+
The Elephant in the Room.
2018
Amir Rosenfeld
Richard S. Zemel
John K. Tsotsos
1
+
Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation
2018
Liwei Wang
Lunjia Hu
Jiayuan Gu
Yue Wu
Zhiqiang Hu
Kun He
John E. Hopcroft
1
+
On Evaluating Adversarial Robustness
2019
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Mądry
Alexey Kurakin
1
+
Similarity of Neural Network Representations Revisited
2019
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
1
+
Certified Adversarial Robustness via Randomized Smoothing
2019
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
1
+
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
2014
Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+
Recognition in Terra Incognita
2018
Sara Beery
Grant Van Horn
Pietro Perona
1
+
Do ImageNet Classifiers Generalize to ImageNet?
2019
Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
1
+
PDF
Chat
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric
2018
Richard Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
1
+
PDF
Chat
A Moral Framework for Understanding Fair ML through Economic Models of Equality of Opportunity
2019
Hoda Heidari
Michele Loi
Krishna P. Gummadi
Andreas Krause
1
+
PDF
Chat
Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks
2016
Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
1
+
Towards Deep Learning Models Resistant to Adversarial Attacks.
2018
Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+
Image Synthesis with a Single (Robust) Classifier
2019
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Mądry
1
+
Adversarial training for free
2019
Ali Shafahi
Mahyar Najibi
Mohammad Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
Larry S. Davis
Gavin Taylor
Tom Goldstein
1
+
Enhancing Adversarial Defense by k-Winners-Take-All
2019
Chang Xiao
Peilin Zhong
Changxi Zheng
1
+
Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization
2019
Shiori Sagawa
Pang Wei Koh
Tatsunori Hashimoto
Percy Liang
1
+
On Adaptive Attacks to Adversarial Example Defenses
2020
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Mądry
1
+
PDF
Chat
What's sex got to do with machine learning?
2020
Lily Hu
Issa Kohler‐Hausmann
1
+
PDF
Chat
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
2020
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
1
+
The Origins and Prevalence of Texture Bias in Convolutional Neural Networks
2019
Katherine L. Hermann
Ting Chen
Simon Kornblith
1
+
Do Adversarially Robust ImageNet Models Transfer Better
2020
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Mądry
1
+
Transforming Neural Network Visual Representations to Predict Human Judgments of Similarity
2020
Maria Attarian
Brett D. Roads
Michael C. Mozer
1
+
PDF
Chat
Array programming with NumPy
2020
C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
1
+
Fairness in Semi-Supervised Learning: Unlabeled Data Help to Reduce Discrimination
2020
Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
1
+
PDF
Chat
Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research
2021
A. Feder Cooper
Ellen Abrams
Na Na
1
+
Adversarial Robustness as a Prior for Learned Representations
2019
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Aleksander Mądry
1
+
Individual Fairness in Hindsight
2018
Ruta Gupta
Vijay Kamble
1
+
PDF
Chat
Fairness Beyond Disparate Treatment & Disparate Impact
2017
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
2018
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix A. Wichmann
Wieland Brendel
1
+
Understanding Neural Networks Through Deep Visualization
2015
Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
1
+
PDF
Chat
Fair Contrastive Learning for Facial Attribute Classification
2022
Sungho Park
Jewook Lee
Pilhyeon Lee
Sunhee Hwang
Dohyung Kim
Hyeran Byun
1
+
PDF
Chat
Fairness through awareness
2012
Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
1
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+
Convergent Learning: Do different neural networks learn the same representations?
2015
Yixuan Li
Jason Yosinski
Jeff Clune
Hod Lipson
John E. Hopcroft
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1