Ayan Majumdar

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Understanding Deep Image Representations by Inverting Them 2014 Aravindh Mahendran
Andrea Vedaldi
2
+ PDF Chat Controversial stimuli: Pitting neural networks against each other as models of human cognition 2020 Tal Golan
Prashant C. Raju
Nikolaus Kriegeskorte
2
+ PDF Chat Enriching ImageNet with Human Similarity Judgments and Psychological Embeddings 2021 Brett D. Roads
Bradley C. Love
2
+ Theoretically Principled Trade-off between Robustness and Accuracy 2019 Hongyang Zhang
Yaodong Yu
Jiantao Jiao
Eric P. Xing
Laurent El Ghaoui
Michael I. Jordan
2
+ Adversarial Self-Supervised Contrastive Learning 2020 Minseon Kim
Jihoon Tack
Sung Ju Hwang
2
+ Ensemble Adversarial Training: Attacks and Defenses 2017 Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
2
+ Are Perceptually-Aligned Gradients a General Property of Robust Classifiers? 2019 Simran Kaur
Jeremy M. Cohen
Zachary C. Lipton
2
+ Explaining and Harnessing Adversarial Examples 2014 Ian Goodfellow
Jonathon Shlens
Christian Szegedy
2
+ Towards Deep Neural Network Architectures Robust to Adversarial Examples 2014 Shixiang Gu
Luca Rigazio
2
+ A Simple Framework for Contrastive Learning of Visual Representations 2020 Ting Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
2
+ Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples 2018 Anish Athalye
Nicholas Carlini
David Wagner
1
+ PDF Chat Evaluating (and Improving) the Correspondence Between Deep Neural Networks and Human Representations 2018 Joshua C. Peterson
Joshua T. Abbott
Thomas L. Griffiths
1
+ Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) 2017 Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
Fernanda Viégas
Rory Sayres
1
+ Insights on representational similarity in neural networks with canonical correlation 2018 Ari S. Morcos
Maithra Raghu
Samy Bengio
1
+ The Elephant in the Room. 2018 Amir Rosenfeld
Richard S. Zemel
John K. Tsotsos
1
+ Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation 2018 Liwei Wang
Lunjia Hu
Jiayuan Gu
Yue Wu
Zhiqiang Hu
Kun He
John E. Hopcroft
1
+ On Evaluating Adversarial Robustness 2019 Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Mądry
Alexey Kurakin
1
+ Similarity of Neural Network Representations Revisited 2019 Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
1
+ Certified Adversarial Robustness via Randomized Smoothing 2019 Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
1
+ Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images 2014 Anh‐Tu Nguyen
Jason Yosinski
Jeff Clune
1
+ Recognition in Terra Incognita 2018 Sara Beery
Grant Van Horn
Pietro Perona
1
+ Do ImageNet Classifiers Generalize to ImageNet? 2019 Benjamin Recht
Rebecca Roelofs
Ludwig Schmidt
Vaishaal Shankar
1
+ PDF Chat The Unreasonable Effectiveness of Deep Features as a Perceptual Metric 2018 Richard Zhang
Phillip Isola
Alexei A. Efros
Eli Shechtman
Oliver Wang
1
+ PDF Chat A Moral Framework for Understanding Fair ML through Economic Models of Equality of Opportunity 2019 Hoda Heidari
Michele Loi
Krishna P. Gummadi
Andreas Krause
1
+ PDF Chat Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks 2016 Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
1
+ Towards Deep Learning Models Resistant to Adversarial Attacks. 2018 Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+ Image Synthesis with a Single (Robust) Classifier 2019 Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Andrew Ilyas
Logan Engstrom
Aleksander Mądry
1
+ Adversarial training for free 2019 Ali Shafahi
Mahyar Najibi
Mohammad Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
Larry S. Davis
Gavin Taylor
Tom Goldstein
1
+ Enhancing Adversarial Defense by k-Winners-Take-All 2019 Chang Xiao
Peilin Zhong
Changxi Zheng
1
+ Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization 2019 Shiori Sagawa
Pang Wei Koh
Tatsunori Hashimoto
Percy Liang
1
+ On Adaptive Attacks to Adversarial Example Defenses 2020 Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Mądry
1
+ PDF Chat What's sex got to do with machine learning? 2020 Lily Hu
Issa Kohler‐Hausmann
1
+ PDF Chat Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning 2020 Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
1
+ The Origins and Prevalence of Texture Bias in Convolutional Neural Networks 2019 Katherine L. Hermann
Ting Chen
Simon Kornblith
1
+ Do Adversarially Robust ImageNet Models Transfer Better 2020 Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Mądry
1
+ Transforming Neural Network Visual Representations to Predict Human Judgments of Similarity 2020 Maria Attarian
Brett D. Roads
Michael C. Mozer
1
+ PDF Chat Array programming with NumPy 2020 C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
1
+ Fairness in Semi-Supervised Learning: Unlabeled Data Help to Reduce Discrimination 2020 Tao Zhang
Tianqing Zhu
Jing Li
Mengde Han
Wanlei Zhou
Philip S. Yu
1
+ PDF Chat Emergent Unfairness in Algorithmic Fairness-Accuracy Trade-Off Research 2021 A. Feder Cooper
Ellen Abrams
Na Na
1
+ Adversarial Robustness as a Prior for Learned Representations 2019 Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Aleksander Mądry
1
+ Individual Fairness in Hindsight 2018 Ruta Gupta
Vijay Kamble
1
+ PDF Chat Fairness Beyond Disparate Treatment & Disparate Impact 2017 Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness 2018 Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix A. Wichmann
Wieland Brendel
1
+ Understanding Neural Networks Through Deep Visualization 2015 Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
1
+ PDF Chat Fair Contrastive Learning for Facial Attribute Classification 2022 Sungho Park
Jewook Lee
Pilhyeon Lee
Sunhee Hwang
Dohyung Kim
Hyeran Byun
1
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ Convergent Learning: Do different neural networks learn the same representations? 2015 Yixuan Li
Jason Yosinski
Jeff Clune
Hod Lipson
John E. Hopcroft
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1