+
|
Learning from learning machines: a new generation of AI technology to meet the needs of science
|
2021
|
Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
|
+
|
Simulation of Lennard-Jones Potential on a Quantum Computer
|
2021
|
Prabhat
Bikash K. Behera
|
+
|
Learning from learning machines: a new generation of AI technology to meet the needs of science
|
2021
|
Luca Pion-Tonachini
Kristofer E. Bouchard
Héctor García Martín
Sean Peisert
W. Holtz
Anil Aswani
Dipankar Dwivedi
Haruko Wainwright
Ghanshyam Pilania
Benjamin Nachman
|
+
|
Track Seeding and Labelling with Embedded-space Graph Neural Networks.
|
2020
|
Nicholas Choma
Daniel Murnane
X. Ju
P. Calafiura
Sean Conlon
Steven Farrell
Prabhat
G. B. Cerati
Lindsey Gray
T. Klijnsma
|
+
|
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
|
2020
|
Chiyu Max Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Prabhat
Anima Anandkumar
|
+
|
Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors
|
2020
|
X. Ju
Steven Farrell
P. Calafiura
Daniel Murnane
Prabhat
Lindsey Gray
T. Klijnsma
K. Pedro
G. B. Cerati
Jim Kowalkowski
|
+
|
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
|
2020
|
Chiyu Max Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Prabhat
Anima Anandkumar
|
+
|
Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems
|
2019
|
Jinlong Wu
Karthik Kashinath
Adrian Albert
Dragos B. Chirila
Prabhat
Heng Xiao
|
+
|
Etalumis
|
2019
|
Atılım Güneş Baydin
Lei Shao
W. Bhimji
L. Heinrich
Lawrence Meadows
Jialin Liu
Andreas Munk
Saeid Naderiparizi
Bradley Gram-Hansen
Gilles Louppe
|
+
|
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
|
2019
|
Adam Rupe
Nalini Kumar
Vladislav Epifanov
Karthik Kashinath
Oleksandr Pavlyk
F. Schlimbach
Mostofa Patwary
Sergey Maidanov
Victor R. Lee
Prabhat
|
+
|
Towards Unsupervised Segmentation of Extreme Weather Events
|
2019
|
Adam Rupe
Karthik Kashinath
Nalini Kumar
Victor W. Lee
Prabhat
James P. Crutchfield
|
+
|
Approximate inference for constructing astronomical catalogs from images
|
2019
|
Jeffrey Regier
Andrew C. Miller
David J. Schlegel
Ryan P. Adams
Jon McAuliffe
Prabhat
|
+
|
Deep Learning for Scientific Inference from Geophysical Data: The Madden-Julian Oscillation as a Test Case
|
2019
|
Benjamin A. Toms
Karthik Kashinath
Prabhat
Da Yang
|
+
|
Spherical CNNs on Unstructured Grids
|
2019
|
Chiyu Max Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
|
+
|
Spherical CNNs on Unstructured Grids
|
2019
|
Chiyu Max Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
|
+
|
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
|
2019
|
Atılım Güneş Baydin
Lei Shao
W. Bhimji
L. Heinrich
Saeid Naderiparizi
Andreas Munk
Jialin Liu
Bradley Gram-Hansen
Gilles Louppe
Lawrence Meadows
|
+
|
Towards Unsupervised Segmentation of Extreme Weather Events
|
2019
|
Adam Rupe
Karthik Kashinath
Nalini Kumar
Victor Lee
Prabhat
James P. Crutchfield
|
+
|
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs
|
2019
|
Liu Yang
Sean Treichler
Thorsten Kurth
Keno Fischer
David A. Barajas‐Solano
Josh Romero
Valentin Churavy
Alexandre M. Tartakovsky
Michael Houston
Prabhat
|
+
|
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
|
2019
|
Adam Rupe
Nalini Kumar
Vladislav Epifanov
Karthik Kashinath
Oleksandr Pavlyk
F. Schlimbach
Mostofa Patwary
Sergey Maidanov
Victor Lee
Prabhat
|
+
|
Spherical CNNs on Unstructured Grids
|
2019
|
Chiyu Jiang
Jingwei Huang
Karthik Kashinath
Prabhat
Philip Marcus
Matthias Nießner
|
+
|
Testing the Reliability of Interpretable Neural Networks in Geoscience Using the Madden-Julian Oscillation
|
2019
|
Benjamin A. Toms
Karthik Kashinath
Prabhat
Yang Da
|
+
PDF
Chat
|
Alchemist: An Apache Spark ⇔ MPI interface
|
2018
|
Alex Gittens
Kai Rothauge
Shusen Wang
Michael W. Mahoney
Jey Kottalam
L. Gerhardt
Prabhat
Michael Ringenburg
Kristyn Maschhoff
|
+
|
Novel deep learning methods for track reconstruction
|
2018
|
Steven Farrell
Mayur Mudigonda
Paolo Calafiura
Aristeidis Tsaris
Jim Kowalkowski
Lindsey Gray
Panagiotis Spentzouris
G. B. Cerati
J. Bendavid
Prabhat
|
+
|
Graph Neural Networks for IceCube Signal Classification
|
2018
|
Nicholas Choma
Federico Monti
L. Gerhardt
Tomasz Jan Palczewski
Zahra Ronaghi
Prabhat
W. Bhimji
Michael M. Bronstein
S. R. Klein
Joan Bruna
|
+
|
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC
|
2018
|
W. Bhimji
Steven Farrell
Thorsten Kurth
M. Paganini
Prabhat
Evan Racah
|
+
|
CosmoFlow: Using Deep Learning to Learn the Universe at Scale
|
2018
|
Amrita Mathuriya
Deborah Bard
P. J. Mendygral
Lawrence Meadows
James Arnemann
Lei Shao
Siyu He
Tuomas Kärnä
Daina Moise
S. J. Pennycook
|
+
|
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
|
2018
|
Atılım Güneş Baydin
L. Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
Andreas Munk
Jialin Liu
Bradley Gram-Hansen
Gilles Louppe
Lawrence Meadows
|
+
|
Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist
|
2018
|
Alex Gittens
Kai Rothauge
Shusen Wang
Michael W. Mahoney
L. Gerhardt
Prabhat
Jey Kottalam
Michael Ringenburg
Kristyn Maschhoff
|
+
|
Alchemist: An Apache Spark MPI Interface
|
2018
|
Alex Gittens
Kai Rothauge
Shusen Wang
Michael W. Mahoney
Jey Kottalam
L. Gerhardt
Prabhat
Michael Ringenburg
Kristyn Maschhoff
|
+
PDF
Chat
|
Cataloging the Visible Universe Through Bayesian Inference at Petascale
|
2018
|
Jeffrey Regier
Jon McAuliffe
R. C. Thomas
Prabhat
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
|
+
|
Cataloging the Visible Universe through Bayesian Inference at Petascale
|
2018
|
Jeffrey Regier
Kiran Pamnany
Keno Fischer
Andreas Noack
Maximilian Lam
Jarrett Revels
Steve Howard
Ryan Giordano
David J. Schlegel
Jon McAuliffe
|
+
|
Approximate Inference for Constructing Astronomical Catalogs from Images
|
2018
|
Jeffrey Regier
Andrew C. Miller
David J. Schlegel
Ryan P. Adams
Jon McAuliffe
Prabhat
|
+
|
Optimizing the Union of Intersections LASSO ($UoI_{LASSO}$) and Vector Autoregressive ($UoI_{VAR}$) Algorithms for Improved Statistical Estimation at Scale
|
2018
|
Mahesh Balasubramanian
Trevor Ruiz
Brandon Cook
Sharmodeep Bhattacharyya
Prabhat
Aviral Shrivastava
Kristofer E. Bouchard
|
+
|
Novel deep learning methods for track reconstruction
|
2018
|
Steven Farrell
P. Calafiura
Mayur Mudigonda
Prabhat
Dustin Anderson
Jean-Roch Vlimant
Stephan Zheng
J. Bendavid
M. Spiropulu
G. B. Cerati
|
+
|
Exascale Deep Learning for Climate Analytics
|
2018
|
Thorsten Kurth
Sean Treichler
Joshua Romero
Mayur Mudigonda
Nathan Luehr
Everett C. Phillips
A Mahesh
Michael J. Matheson
Jack Deslippe
Massimiliano Fatica
|
+
|
Graph Neural Networks for IceCube Signal Classification
|
2018
|
Nicholas Choma
Federico Monti
L. Gerhardt
Tomasz Jan Palczewski
Zahra Ronaghi
Prabhat
W. Bhimji
Michael M. Bronstein
S. R. Klein
Joan Bruna
|
+
|
CosmoFlow: Using Deep Learning to Learn the Universe at Scale
|
2018
|
Amrita Mathuriya
Deborah Bard
P. J. Mendygral
Lawrence Meadows
James Arnemann
Lei Shao
Siyu He
Tuomas Kärnä
Daina Moise
S. J. Pennycook
|
+
|
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
|
2018
|
Atılım Güneş Baydin
L. Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
Andreas Munk
Jialin Liu
Bradley Gram-Hansen
Gilles Louppe
Lawrence Meadows
|
+
|
Alchemist: An Apache Spark <=> MPI Interface
|
2018
|
Alex Gittens
Kai Rothauge
Shusen Wang
Michael W. Mahoney
Jey Kottalam
L. Gerhardt
Prabhat
Michael Ringenburg
Kristyn Maschhoff
|
+
|
Scaling GRPC Tensorflow on 512 nodes of Cori Supercomputer
|
2017
|
Amrita Mathuriya
Thorsten Kurth
Vivek Rane
Mustafa Mustafa
Lei Shao
Debbie Bard
Prabhat
Victor W. Lee
|
+
|
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC
|
2017
|
W. Bhimji
Steven Farrell
Thorsten Kurth
M. Paganini
Prabhat
Evan Racah
|
+
|
Galactos
|
2017
|
Brian Friesen
Md. Mostofa Ali Patwary
Brian Austin
Nadathur Satish
Zachary Slepian
Narayanan Sundaram
Deborah Bard
Daniel J. Eisenstein
Jack Deslippe
Pradeep Dubey
|
+
|
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
|
2017
|
Thorsten Kurth
Jian Zhang
Satish Nadathur
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
|
+
|
Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
|
2017
|
Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
|
+
|
Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets
|
2017
|
Evan Racah
Christopher Beckham
Tegan Maharaj
Prabhat
Christopher Pal
|
+
|
ArrayBridge: Interweaving declarative array processing with high-performance computing
|
2017
|
Haoyuan Xing
Sofoklis Floratos
Spyros Blanas
Suren Byna
Prabhat
Kesheng Wu
Paul Brown
|
+
|
A Physics-Based Approach to Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
|
2017
|
Adam Rupe
James P. Crutchfield
Karthik Kashinath
Prabhat
|
+
|
An Assessment of Data Transfer Performance for Large-Scale Climate Data Analysis and Recommendations for the Data Infrastructure for CMIP6
|
2017
|
Eli Dart
Michael Wehner
Prabhat
|
+
|
Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators
|
2017
|
Mario Lezcano Casado
Atılım Güneş Baydin
David Martínez-Rubio
Tuan Anh Lê
Frank Wood
L. Heinrich
Gilles Louppe
K. Cranmer
Karen Ng
W. Bhimji
|
+
|
Scaling GRPC Tensorflow on 512 nodes of Cori Supercomputer
|
2017
|
Amrita Mathuriya
Thorsten Kurth
Vivek Rane
Mustafa Mustafa
Lei Shao
Debbie Bard
Prabhat
Victor W. Lee
|
+
|
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
|
2017
|
Thorsten Kurth
Jian Zhang
Nadathur Satish
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
|
+
|
Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction
|
2017
|
Kristofer E. Bouchard
Alejandro F. Bujan
Farbod Roosta-Khorasani
Shashanka Ubaru
Prabhat
Antoine M. Snijders
Jian‐Hua Mao
Edward F. Chang
Michael W. Mahoney
Sharmodeep Bhattacharyya
|
+
|
Deep Neural Networks for Physics Analysis on low-level whole-detector data at the LHC
|
2017
|
W. Bhimji
Steven Farrell
Thorsten Kurth
M. Paganini
Prabhat
Evan Racah
|
+
|
ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events
|
2016
|
Evan Racah
Christopher Beckham
Tegan Maharaj
Samira Ebrahimi Kahou
Prabhat
Christopher Pal
|
+
PDF
Chat
|
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks
|
2016
|
Evan Racah
Seyoon Ko
Peter Sadowski
W. Bhimji
C. E. Tull
Sang‐Yun Oh
Pierre Baldi
Prabhat
|
+
PDF
Chat
|
PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Architectures
|
2016
|
Md. Mostofa Ali Patwary
Nadathur Satish
Narayanan Sundaram
Jialin Liu
Peter Sadowski
Evan Racah
Suren Byna
C. E. Tull
W. Bhimji
Prabhat
|
+
|
Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks
|
2016
|
Evan Racah
Seyoon Ko
Peter Sadowski
W. Bhimji
C. E. Tull
Sang‐Yun Oh
Pierre Baldi
Prabhat
|
+
|
Application of Deep Convolutional Neural Networks for Detecting Extreme Weather in Climate Datasets
|
2016
|
Yunjie Liu
Evan Racah
Prabhat
Joaquin Correa
Amir Khosrowshahi
David A. Lavers
Kenneth E. Kunkel
Michael Wehner
William D. Collins
|
+
|
Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies
|
2016
|
Alex Gittens
Aditya Devarakonda
Evan Racah
Michael Ringenburg
L. Gerhardt
Jey Kottalam
Jialin Liu
Kristyn Maschhoff
Shane Canon
Jatin Chhugani
|
+
|
Learning an Astronomical Catalog of the Visible Universe through Scalable Bayesian Inference
|
2016
|
Jeffrey Regier
Kiran Pamnany
Ryan Giordano
R. C. Thomas
David J. Schlegel
Jon McAuliffe
Prabhat
|
+
|
ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events
|
2016
|
Evan Racah
Christopher Beckham
Tegan Maharaj
Samira Ebrahimi Kahou
Prabhat
Christopher Pal
|
+
|
A Gaussian process model of quasar spectral energy distributions
|
2015
|
Andrew C. Miller
Albert W. Wu
Jeffrey Regier
Jon McAuliffe
Dustin Lang
Prabhat
David J. Schlegel
Ryan P. Adams
|
+
|
Scalable Bayesian Optimization Using Deep Neural Networks
|
2015
|
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
Nadathur Satish
Narayanan Sundaram
Md. Mostofa Ali Patwary
Prabhat
Ryan P. Adams
|
+
|
Scalable Bayesian Optimization Using Deep Neural Networks
|
2015
|
Jasper Snoek
Oren Rippel
Kevin Swersky
Ryan Kiros
Nadathur Satish
Narayanan Sundaram
Mostofa Patwary
Prabhat
Ryan P. Adams
|
+
|
Celeste: Variational inference for a generative model of astronomical images
|
2015
|
Jeffrey Regier
Andrew C. Miller
Jon McAuliffe
Ryan P. Adams
Matt Hoffman
Dustin Lang
David J. Schlegel
Prabhat
|
+
PDF
Chat
|
Parallelizing Gaussian Process Calculations in<i>R</i>
|
2015
|
Christopher J. Paciorek
Benjamin Lipshitz
Wei Zhuo
Prabhat
Cari G. Kaufman
R. C. Thomas
|
+
|
ON SOME GENERALIZED DIFFERENCE PARANORMED SEQUENCE SPACES ASSOCIATED WITH MULTIPLIER SEQUENCE DEFINED BY MODULUS FUNCTION
|
2011
|
Binod
Chandra
Tripathy
Prabhat
|