Manfred K. Warmuth

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Optimal Transport with Tempered Exponential Measures 2024 Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
+ PDF Chat Noise misleads rotation invariant algorithms on sparse targets 2024 Manfred K. Warmuth
Wojciech KotƂowski
Matt Jones
Ehsan Amid
+ PDF Chat Tempered Calculus for ML: Application to Hyperbolic Model Embedding 2024 Richard Nock
Ehsan Amid
Frank Nielsen
Alexander Soen
Manfred K. Warmuth
+ A Mechanism for Sample-Efficient In-Context Learning for Sparse Retrieval Tasks 2023 Jacob Abernethy
Alekh Agarwal
Teodor V. Marinov
Manfred K. Warmuth
+ Boosting with Tempered Exponential Measures 2023 Richard Nock
Ehsan Amid
Manfred K. Warmuth
+ Optimal Transport with Tempered Exponential Measures 2023 Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
+ The Tempered Hilbert Simplex Distance and Its Application To Non-linear Embeddings of TEMs 2023 Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
+ Unlabeled sample compression schemes and corner peelings for ample and maximum classes 2022 Jérémie Chalopin
Victor Chepoi
Shay Moran
Manfred K. Warmuth
+ Step-size Adaptation Using Exponentiated Gradient Updates 2022 Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
+ Learning from Randomly Initialized Neural Network Features 2022 Ehsan Amid
Rohan Anil
Wojciech KotƂowski
Manfred K. Warmuth
+ Layerwise Bregman Representation Learning with Applications to Knowledge Distillation 2022 Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
+ Clustering above Exponential Families with Tempered Exponential Measures 2022 Ehsan Amid
Richard Nock
Manfred K. Warmuth
+ LocoProp: Enhancing BackProp via Local Loss Optimization 2021 Ehsan Amid
Rohan Anil
Manfred K. Warmuth
+ Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond 2021 Negin Majidi
Ehsan Amid
Hossein Talebi
Manfred K. Warmuth
+ LocoProp: Enhancing BackProp via Local Loss Optimization 2021 Ehsan Amid
Rohan Anil
Manfred K. Warmuth
+ Rank-smoothed Pairwise Learning In Perceptual Quality Assessment 2020 Hossein Talebi
Ehsan Amid
Peyman Milanfar
Manfred K. Warmuth
+ PDF Chat Rank-Smoothed Pairwise Learning In Perceptual Quality Assessment 2020 Hossein Talebi
Ehsan Amid
Peyman Milanfar
Manfred K. Warmuth
+ PDF Chat An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint 2020 Ehsan Amid
Manfred K. Warmuth
+ Interpolating Between Gradient Descent and Exponentiated Gradient Using Reparameterized Gradient Descent. 2020 Ehsan Amid
Manfred K. Warmuth
+ Reparameterizing Mirror Descent as Gradient Descent 2020 Ehsan Amid
Manfred K. Warmuth
+ A case where a spindly two-layer linear network whips any neural network with a fully connected input layer 2020 Manfred K. Warmuth
Wojciech KotƂowski
Ehsan Amid
+ TriMap: Large-scale Dimensionality Reduction Using Triplets 2019 Ehsan Amid
Manfred K. Warmuth
+ An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint 2019 Ehsan Amid
Manfred K. Warmuth
+ Unbiased estimators for random design regression 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression. 2019 MichaƂ DereziƄski
Kenneth L. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
+ Robust Bi-Tempered Logistic Loss Based on Bregman Divergences 2019 Ehsan Amid
Manfred K. Warmuth
Rohan Anil
Tomer Koren
+ Two-temperature logistic regression based on the Tsallis divergence 2019 Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
+ Correcting the bias in least squares regression with volume-rescaled sampling 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Divergence-Based Motivation for Online EM and Combining Hidden Variable Models 2019 Ehsan Amid
Manfred K. Warmuth
+ Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression 2019 MichaƂ DereziƄski
Kenneth L. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
+ Adaptive scale-invariant online algorithms for learning linear models 2019 MichaƂ Kempka
Wojciech KotƂowski
Manfred K. Warmuth
+ Divergence-Based Motivation for Online EM and Combining Hidden Variable Models. 2019 Ehsan Amid
Manfred K. Warmuth
+ TriMap: Large-scale Dimensionality Reduction Using Triplets 2019 Ehsan Amid
Manfred K. Warmuth
+ An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint 2019 Ehsan Amid
Manfred K. Warmuth
+ Unbiased estimators for random design regression 2019 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Divergence-Based Motivation for Online EM and Combining Hidden Variable Models 2019 Ehsan Amid
Manfred K. Warmuth
+ Robust Bi-Tempered Logistic Loss Based on Bregman Divergences 2019 Ehsan Amid
Manfred K. Warmuth
Rohan Anil
Tomer Koren
+ A More Globally Accurate Dimensionality Reduction Method Using Triplets 2018 Ehsan Amid
Manfred K. Warmuth
+ Reverse iterative volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
+ Tail bounds for volume sampled linear regression. 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Leveraged volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Speech Recognition: Keyword Spotting Through Image Recognition 2018 Sanjay Krishna Gouda
Salil Kanetkar
David C. Harrison
Manfred K. Warmuth
+ Online Non-Additive Path Learning under Full and Partial Information 2018 Corinna Cortes
Vitaly Kuznetsov
Mehryar Mohri
Holakou Rahmanian
Manfred K. Warmuth
+ Correcting the bias in least squares regression with volume-rescaled sampling 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Leveraged volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
+ Reverse iterative volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
+ A more globally accurate dimensionality reduction method using triplets 2018 Ehsan Amid
Manfred K. Warmuth
+ Subsampling for Ridge Regression via Regularized Volume Sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
+ Online Dynamic Programming 2017 Holakou Rahmanian
Manfred K. Warmuth
+ Two-temperature logistic regression based on the Tsallis divergence. 2017 Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
+ Unbiased estimates for linear regression via volume sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
+ Unbiased estimates for linear regression via volume sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
+ Subsampling for Ridge Regression via Regularized Volume Sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
+ Two-temperature logistic regression based on the Tsallis divergence 2017 Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
+ Online Dynamic Programming 2017 Holakou Rahmanian
Manfred K. Warmuth
+ t-Exponential Triplet Embedding. 2016 Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
+ Low-dimensional Data Embedding via Robust Ranking 2016 Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
+ PDF Chat Labeled Compression Schemes for Extremal Classes 2016 Shay Moran
Manfred K. Warmuth
+ Low-dimensional Data Embedding via Robust Ranking 2016 Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
+ PCA with Gaussian perturbations 2015 Wojciech KotƂowski
Manfred K. Warmuth
+ PCA with Gaussian perturbations 2015 Wojciech KotƂowski
Manfred K. Warmuth
+ Labeled compression schemes for extremal classes 2015 Shay Moran
Manfred K. Warmuth
+ A Bayesian Probability Calculus for Density Matrices 2014 Manfred K. Warmuth
Dima Kuzmin
+ A Bayesian Probability Calculus for Density Matrices 2014 Manfred K. Warmuth
Dima Kuzmin
+ PDF Chat Online PCA with Optimal Regrets 2013 Jiazhong Nie
Wojciech KotƂowski
Manfred K. Warmuth
+ On-line PCA with Optimal Regrets 2013 Jiazhong Nie
Wojciech KotƂowski
Manfred K. Warmuth
+ Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions 2013 Katy S. Azoury
Manfred K. Warmuth
+ Using Experts for Predicting Continuous Outcomes 2010 J. Kivinen
Manfred K. Warmuth
+ On-line variance minimization in O(n2) per trial? 2010 Elad Hazan
Satyen Kale
Manfred K. Warmuth
+ PDF Chat Bayesian generalized probability calculus for density matrices 2009 Manfred K. Warmuth
Dima Kuzmin
+ Bayesian Generalized Probability Calculus for Density Matrices 2009 Manfred K. Warmuth
Dima Kuzmin
+ Winnowing subspaces 2007 Manfred K. Warmuth
+ When Is There a Free Matrix Lunch? 2007 Manfred K. Warmuth
+ PDF Chat None 2001 Katy S. Azoury
Manfred K. Warmuth
+ PDF Chat On the worst-case analysis of temporal-difference learning algorithms 1996 Robert E. Schapire
Manfred K. Warmuth
+ Bounds on approximate steepest descent for likelihood maximization in exponential families 1994 NicolĂČ Cesa‐Bianchi
Anders Krogh
Manfred K. Warmuth
+ WORST-CASE QUADRATIC LOSS BOUNDS FOR ON-LINE PREDICTION OF LINEAR FUNCTIONS BY GRADIENT DESCENT 1993 NicolĂČ Cesa‐Bianchi
Philip M. Long
Manfred K. Warmuth
+ Worst-case quadratic loss bounds for a generalization of the Widrow-Hoff rule 1993 NicolĂČ Cesa‐Bianchi
Philip M. Long
Manfred K. Warmuth
+ PDF Chat The Weighted Majority Algorithm 1989 Nick Littlestone
Manfred K. Warmuth
+ On the Complexity of Iterated Shuffle ; CU-CS-201-81 1981 Manfred K. Warmuth
David Haussler
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming 1967 L.M. Bregman
6
+ Matrix approximation and projective clustering via volume sampling 2006 Amit Deshpande
Luis Rademacher
Santosh Vempala
Grant Wang
6
+ PDF Chat User-Friendly Tail Bounds for Sums of Random Matrices 2011 Joel A. Tropp
6
+ Winnowing subspaces 2007 Manfred K. Warmuth
4
+ Measures on the Closed Subspaces of a Hilbert Space 1975 Andrew M. Gleason
4
+ PDF Chat Quantum extension of conditional probability 1999 Nicolas J. Cerf
Christoph Adami
4
+ PDF Chat Randomized Algorithms for Matrices and Data 2012 Michael W. Mahoney
4
+ PDF Chat Deformed exponentials and logarithms in generalized thermostatistics 2002 Jan Naudts
4
+ WORST-CASE QUADRATIC LOSS BOUNDS FOR ON-LINE PREDICTION OF LINEAR FUNCTIONS BY GRADIENT DESCENT 1993 NicolĂČ Cesa‐Bianchi
Philip M. Long
Manfred K. Warmuth
4
+ PDF Chat Gleason-Type Derivations of the Quantum Probability Rule for Generalized Measurements 2004 Carlton M. Caves
Christopher A. Fuchs
Kiran K. Manne
Joseph M. Renes
4
+ PDF Chat Efficient Volume Sampling for Row/Column Subset Selection 2010 Amit Deshpande
Luis Rademacher
4
+ Fast approximation of matrix coherence and statistical leverage 2012 Petros Drineas
Malik Magdon‐Ismail
Michael W. Mahoney
David P. Woodruff
4
+ Linear combination of transformations 2002 Marc Alexa
4
+ PDF Chat Quantum Bayes rule 2001 RĂŒdiger Schack
Todd A. Brun
Carlton M. Caves
3
+ PDF Chat None 2001 Katy S. Azoury
Manfred K. Warmuth
3
+ PDF Chat Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities 2010 Andrzej Cichocki
ĐšŃƒĐœ-очо ĐĐŒĐ°Ń€Đž
3
+ PDF Chat Stochastic optimization for PCA and PLS 2012 Raman Arora
Andrew Cotter
Karen Livescu
Nathan Srebro
3
+ A geometric property of the least squares solution of linear equations 1990 Aharon Ben‐Tal
Marc Teboulle
3
+ PDF Chat Learned perceptual image enhancement 2018 Hossein Talebi
Peyman Milanfar
3
+ t-logistic regression 2010 Nan Ding
S. V. N. Vishwanathan
3
+ Online convex programming and generalized infinitesimal gradient ascent 2003 Martin Zinkevich
3
+ PDF Chat NIMA: Neural Image Assessment 2018 Hossein Talebi
Peyman Milanfar
3
+ Unbiased estimates for linear regression via volume sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
3
+ Subsampling for Ridge Regression via Regularized Volume Sampling 2017 MichaƂ DereziƄski
Manfred K. Warmuth
3
+ PDF Chat Faster Subset Selection for Matrices and Applications 2013 Haim Avron
Christos Boutsidis
3
+ Leveraged volume sampling for linear regression 2018 MichaƂ DereziƄski
Manfred K. Warmuth
Daniel Hsu
3
+ PDF Chat Determinantal Processes and Independence 2006 J. Hough
Manjunath Krishnapur
Yuval Peres
BĂĄlint VirĂĄg
2
+ PDF Chat Sample Compression Schemes for VC Classes 2016 Shay Moran
Amir Yehudayoff
2
+ How to be Fair and Diverse 2016 L. Elisa Celis
Amit Deshpande
Tarun Kathuria
Nisheeth K. Vishnoi
2
+ A density-free approach to the matrix variate beta distribution 1970 Sujit Kumar Mitra
2
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
2
+ Shattering Extremal Systems 2012 Shay Moran
Kurt Mehlhorn
Ami Litman
2
+ Fast randomized kernel ridge regression with statistical guarantees 2015 A. El Alaoui
Michael W. Mahoney
2
+ Sketching as a Tool for Numerical Linear Algebra 2014 David P. Woodruff
2
+ Recursive Parameter Estimation Using Incomplete Data 1984 D. M. Titterington
2
+ A geometric approach to sample compression 2012 Benjamin I. P. Rubinstein
J Rubinstein
2
+ Stochastic Optimization of PCA with Capped MSG 2013 Raman Arora
Andy Cotter
Nati Srebro
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Fast Determinantal Point Process Sampling with Application to Clustering 2013 Byungkon Kang
2
+ PDF Chat Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions 2011 Nathan Halko
Per‐Gunnar Martinsson
Joel A. Tropp
2
+ PDF Chat Relative-Error $CUR$ Matrix Decompositions 2008 Petros Drineas
Michael W. Mahoney
S. Muthukrishnan
2
+ EM Algorithms for PCA and SPCA 1997 Sam T. Roweis
2
+ PDF Chat On-Line Expectation–Maximization Algorithm for latent Data Models 2009 Olivier CappĂ©
Éric Moulines
2
+ A combinatorial, primal-dual approach to semidefinite programs 2007 Sanjeev Arora
Satyen Kale
2
+ PDF Chat Determinantal Point Processes for Machine Learning 2012 Alex Kulesza
2
+ PDF Chat Improved second-order bounds for prediction with expert advice 2006 NicolĂČ Cesa‐Bianchi
Yishay Mansour
Gilles Stoltz
2
+ PDF Chat Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ None 2001 Lars Holst
2
+ PDF Chat Ranking individuals by group comparisons 2006 Tzu-Kuo Huang
Chih‐Jen Lin
Ruby C. Weng
2
+ An iterative row-action method for interval convex programming 1981 Yair Censor
Arnold Lent
2