+
PDF
Chat
|
Optimal Transport with Tempered Exponential Measures
|
2024
|
Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
|
+
PDF
Chat
|
Noise misleads rotation invariant algorithms on sparse targets
|
2024
|
Manfred K. Warmuth
Wojciech KotĆowski
Matt Jones
Ehsan Amid
|
+
PDF
Chat
|
Tempered Calculus for ML: Application to Hyperbolic Model Embedding
|
2024
|
Richard Nock
Ehsan Amid
Frank Nielsen
Alexander Soen
Manfred K. Warmuth
|
+
|
A Mechanism for Sample-Efficient In-Context Learning for Sparse Retrieval Tasks
|
2023
|
Jacob Abernethy
Alekh Agarwal
Teodor V. Marinov
Manfred K. Warmuth
|
+
|
Boosting with Tempered Exponential Measures
|
2023
|
Richard Nock
Ehsan Amid
Manfred K. Warmuth
|
+
|
Optimal Transport with Tempered Exponential Measures
|
2023
|
Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
|
+
|
The Tempered Hilbert Simplex Distance and Its Application To Non-linear Embeddings of TEMs
|
2023
|
Ehsan Amid
Frank Nielsen
Richard Nock
Manfred K. Warmuth
|
+
|
Unlabeled sample compression schemes and corner peelings for ample and maximum classes
|
2022
|
Jérémie Chalopin
Victor Chepoi
Shay Moran
Manfred K. Warmuth
|
+
|
Step-size Adaptation Using Exponentiated Gradient Updates
|
2022
|
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
|
+
|
Learning from Randomly Initialized Neural Network Features
|
2022
|
Ehsan Amid
Rohan Anil
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
Layerwise Bregman Representation Learning with Applications to Knowledge Distillation
|
2022
|
Ehsan Amid
Rohan Anil
Christopher Fifty
Manfred K. Warmuth
|
+
|
Clustering above Exponential Families with Tempered Exponential Measures
|
2022
|
Ehsan Amid
Richard Nock
Manfred K. Warmuth
|
+
|
LocoProp: Enhancing BackProp via Local Loss Optimization
|
2021
|
Ehsan Amid
Rohan Anil
Manfred K. Warmuth
|
+
|
Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond
|
2021
|
Negin Majidi
Ehsan Amid
Hossein Talebi
Manfred K. Warmuth
|
+
|
LocoProp: Enhancing BackProp via Local Loss Optimization
|
2021
|
Ehsan Amid
Rohan Anil
Manfred K. Warmuth
|
+
|
Rank-smoothed Pairwise Learning In Perceptual Quality Assessment
|
2020
|
Hossein Talebi
Ehsan Amid
Peyman Milanfar
Manfred K. Warmuth
|
+
PDF
Chat
|
Rank-Smoothed Pairwise Learning In Perceptual Quality Assessment
|
2020
|
Hossein Talebi
Ehsan Amid
Peyman Milanfar
Manfred K. Warmuth
|
+
PDF
Chat
|
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
|
2020
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Interpolating Between Gradient Descent and Exponentiated Gradient Using Reparameterized Gradient Descent.
|
2020
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Reparameterizing Mirror Descent as Gradient Descent
|
2020
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
A case where a spindly two-layer linear network whips any neural network with a fully connected input layer
|
2020
|
Manfred K. Warmuth
Wojciech KotĆowski
Ehsan Amid
|
+
|
TriMap: Large-scale Dimensionality Reduction Using Triplets
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Unbiased estimators for random design regression
|
2019
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression.
|
2019
|
MichaĆ DereziĆski
Kenneth L. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
|
+
|
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
|
2019
|
Ehsan Amid
Manfred K. Warmuth
Rohan Anil
Tomer Koren
|
+
|
Two-temperature logistic regression based on the Tsallis divergence
|
2019
|
Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
|
+
|
Correcting the bias in least squares regression with volume-rescaled sampling
|
2019
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Minimax experimental design: Bridging the gap between statistical and worst-case approaches to least squares regression
|
2019
|
MichaĆ DereziĆski
Kenneth L. Clarkson
Michael W. Mahoney
Manfred K. Warmuth
|
+
|
Adaptive scale-invariant online algorithms for learning linear models
|
2019
|
MichaĆ Kempka
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models.
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
TriMap: Large-scale Dimensionality Reduction Using Triplets
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Unbiased estimators for random design regression
|
2019
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Divergence-Based Motivation for Online EM and Combining Hidden Variable Models
|
2019
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
|
2019
|
Ehsan Amid
Manfred K. Warmuth
Rohan Anil
Tomer Koren
|
+
|
A More Globally Accurate Dimensionality Reduction Method Using Triplets
|
2018
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Reverse iterative volume sampling for linear regression
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
Tail bounds for volume sampled linear regression.
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Leveraged volume sampling for linear regression
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Speech Recognition: Keyword Spotting Through Image Recognition
|
2018
|
Sanjay Krishna Gouda
Salil Kanetkar
David C. Harrison
Manfred K. Warmuth
|
+
|
Online Non-Additive Path Learning under Full and Partial Information
|
2018
|
Corinna Cortes
Vitaly Kuznetsov
Mehryar Mohri
Holakou Rahmanian
Manfred K. Warmuth
|
+
|
Correcting the bias in least squares regression with volume-rescaled sampling
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Leveraged volume sampling for linear regression
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
Daniel Hsu
|
+
|
Reverse iterative volume sampling for linear regression
|
2018
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
A more globally accurate dimensionality reduction method using triplets
|
2018
|
Ehsan Amid
Manfred K. Warmuth
|
+
|
Subsampling for Ridge Regression via Regularized Volume Sampling
|
2017
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
Online Dynamic Programming
|
2017
|
Holakou Rahmanian
Manfred K. Warmuth
|
+
|
Two-temperature logistic regression based on the Tsallis divergence.
|
2017
|
Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
|
+
|
Unbiased estimates for linear regression via volume sampling
|
2017
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
Unbiased estimates for linear regression via volume sampling
|
2017
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
Subsampling for Ridge Regression via Regularized Volume Sampling
|
2017
|
MichaĆ DereziĆski
Manfred K. Warmuth
|
+
|
Two-temperature logistic regression based on the Tsallis divergence
|
2017
|
Ehsan Amid
Manfred K. Warmuth
Sriram Srinivasan
|
+
|
Online Dynamic Programming
|
2017
|
Holakou Rahmanian
Manfred K. Warmuth
|
+
|
t-Exponential Triplet Embedding.
|
2016
|
Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
|
+
|
Low-dimensional Data Embedding via Robust Ranking
|
2016
|
Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
|
+
PDF
Chat
|
Labeled Compression Schemes for Extremal Classes
|
2016
|
Shay Moran
Manfred K. Warmuth
|
+
|
Low-dimensional Data Embedding via Robust Ranking
|
2016
|
Ehsan Amid
Nikos Vlassis
Manfred K. Warmuth
|
+
|
PCA with Gaussian perturbations
|
2015
|
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
PCA with Gaussian perturbations
|
2015
|
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
Labeled compression schemes for extremal classes
|
2015
|
Shay Moran
Manfred K. Warmuth
|
+
|
A Bayesian Probability Calculus for Density Matrices
|
2014
|
Manfred K. Warmuth
Dima Kuzmin
|
+
|
A Bayesian Probability Calculus for Density Matrices
|
2014
|
Manfred K. Warmuth
Dima Kuzmin
|
+
PDF
Chat
|
Online PCA with Optimal Regrets
|
2013
|
Jiazhong Nie
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
On-line PCA with Optimal Regrets
|
2013
|
Jiazhong Nie
Wojciech KotĆowski
Manfred K. Warmuth
|
+
|
Relative Loss Bounds for On-line Density Estimation with the Exponential Family of Distributions
|
2013
|
Katy S. Azoury
Manfred K. Warmuth
|
+
|
Using Experts for Predicting Continuous Outcomes
|
2010
|
J. Kivinen
Manfred K. Warmuth
|
+
|
On-line variance minimization in O(n2) per trial?
|
2010
|
Elad Hazan
Satyen Kale
Manfred K. Warmuth
|
+
PDF
Chat
|
Bayesian generalized probability calculus for density matrices
|
2009
|
Manfred K. Warmuth
Dima Kuzmin
|
+
|
Bayesian Generalized Probability Calculus for Density Matrices
|
2009
|
Manfred K. Warmuth
Dima Kuzmin
|
+
|
Winnowing subspaces
|
2007
|
Manfred K. Warmuth
|
+
|
When Is There a Free Matrix Lunch?
|
2007
|
Manfred K. Warmuth
|
+
PDF
Chat
|
None
|
2001
|
Katy S. Azoury
Manfred K. Warmuth
|
+
PDF
Chat
|
On the worst-case analysis of temporal-difference learning algorithms
|
1996
|
Robert E. Schapire
Manfred K. Warmuth
|
+
|
Bounds on approximate steepest descent for likelihood maximization in exponential families
|
1994
|
NicolĂČ CesaâBianchi
Anders Krogh
Manfred K. Warmuth
|
+
|
WORST-CASE QUADRATIC LOSS BOUNDS FOR ON-LINE PREDICTION OF LINEAR FUNCTIONS BY GRADIENT DESCENT
|
1993
|
NicolĂČ CesaâBianchi
Philip M. Long
Manfred K. Warmuth
|
+
|
Worst-case quadratic loss bounds for a generalization of the Widrow-Hoff rule
|
1993
|
NicolĂČ CesaâBianchi
Philip M. Long
Manfred K. Warmuth
|
+
PDF
Chat
|
The Weighted Majority Algorithm
|
1989
|
Nick Littlestone
Manfred K. Warmuth
|
+
|
On the Complexity of Iterated Shuffle ; CU-CS-201-81
|
1981
|
Manfred K. Warmuth
David Haussler
|