Balth. van der Pol

Follow

Generating author description...

All published works
Action Title Year Authors
+ On series of the reciprocals of the jacobian theta functions 1960 Balth. van der Pol
+ On a Generalisation of the Non-Linear Differential Equation <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct… 1957 Balth. van der Pol
+ Equations Differentielles Lineaires Verifiees par Certaines Fonctions Modulaires Elliptiques 1956 Jacques Touchard
Balth. van der Pol
+ Four-place tables of transcendental functions Siebenstellige tafeln der elementaren transzendenten funktionen 1955 Balth. van der Pol
+ The Representation of Numbers as Sums of Eight, Sixteen and Twenty-Four Squares 1954 Balth. van der Pol
+ Table cloth showing the 'Gaussian' primes 1954 Balth. van der Pol
+ On a Non-Linear Partial Differential Equation Satisfied by the Logarithm of The Jacobian Thetafunctions, With Arithmetical Applications. I 1951 Balth. van der Pol
+ The Primes in k(ϱ) 1951 Balth. van der Pol
Pierre Speziali
+ On a Non-Linear Partial Differential Equation Satisfied by the Logarithm of the Jacobian Thetafunctions, With Arithmetical Applications. II 1951 Balth. van der Pol
+ LXXIX.<i>Application of the operational or symbolic calculus to the theory of prime numbers</i> 1938 Balth. van der Pol
+ A generalization of Maxwell's definition of solid harmonics to waves in n dimensions 1936 Balth. van der Pol
+ Tchebycheff polynomials and their relation to circular functions, Besselfunctions and Lissajous-Figures 1934 Balth. van der Pol
Th.J Weijers
+ XLVII.<i>Symbolic calculus</i> 1932 Balth. van der Pol
K. F. Niessen
+ XCV.<i>On the operational solution of linear differential equations and an investigation of the properties of these solutions</i> 1929 Balth. van der Pol
+ II.<i>On the stability of the solutions of Mathieu's equation</i> 1928 Balth. van der Pol
M.J.O. Strutt