+
|
Distilling the Knowledge in a Neural Network
|
2015
|
Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
|
1
|
+
PDF
Chat
|
ImageNet Large Scale Visual Recognition Challenge
|
2015
|
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
|
1
|
+
|
Deep Unsupervised Learning using Nonequilibrium Thermodynamics
|
2015
|
Jascha Sohl‐Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
|
1
|
+
PDF
Chat
|
Deep Residual Learning for Image Recognition
|
2016
|
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
|
1
|
+
|
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
|
2013
|
Yoshua Bengio
Nicholas Léonard
Aaron Courville
|
1
|
+
PDF
Chat
|
Perceptual Losses for Real-Time Style Transfer and Super-Resolution
|
2016
|
Justin Johnson
Alexandre Alahi
Li Fei-Fei
|
1
|
+
|
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
|
2016
|
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
|
1
|
+
PDF
Chat
|
Towards Accurate Multi-person Pose Estimation in the Wild
|
2017
|
George Papandreou
Tyler Zhu
Nori Kanazawa
Alexander Toshev
Jonathan Tompson
Chris Bregler
Kevin Murphy
|
1
|
+
PDF
Chat
|
Deep Learning with Low Precision by Half-Wave Gaussian Quantization
|
2017
|
Zhaowei Cai
Xiaodong He
Jian Sun
Nuno Vasconcelos
|
1
|
+
|
To prune, or not to prune: exploring the efficacy of pruning for model compression
|
2017
|
Michael Zhu
Suyog Gupta
|
1
|
+
|
PACT: Parameterized Clipping Activation for Quantized Neural Networks
|
2018
|
Jungwook Choi
Zhuo Wang
Swagath Venkataramani
Pierce Chuang
Vijayalakshmi Srinivasan
Kailash Gopalakrishnan
|
1
|
+
|
Quantizing deep convolutional networks for efficient inference: A whitepaper
|
2018
|
Raghuraman Krishnamoorthi
|
1
|
+
PDF
Chat
|
Toward Characteristic-Preserving Image-Based Virtual Try-On Network
|
2018
|
Bochao Wang
Huabin Zheng
Xiaodan Liang
Yimin Chen
Liang Lin
Meng Yang
|
1
|
+
PDF
Chat
|
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
|
2018
|
Dongqing Zhang
Jiaolong Yang
Dongqiangzi Ye
Gang Hua
|
1
|
+
|
Rethinking the Value of Network Pruning
|
2018
|
Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
|
1
|
+
|
Improving Neural Network Quantization without Retraining using Outlier Channel Splitting
|
2019
|
Ritchie Zhao
Yuwei Hu
Jordan Dotzel
Christopher De
Zhiru Zhang
|
1
|
+
|
Learned Step Size Quantization
|
2019
|
Steven K. Esser
Jeffrey L. McKinstry
Deepika Bablani
Rathinakumar Appuswamy
Dharmendra S. Modha
|
1
|
+
|
Large Scale GAN Training for High Fidelity Natural Image Synthesis
|
2018
|
Andrew Brock
Jeff Donahue
Karen Simonyan
|
1
|
+
|
Generative Modeling by Estimating Gradients of the Data Distribution
|
2019
|
Yang Song
Stefano Ermon
|
1
|
+
PDF
Chat
|
Value-Aware Quantization for Training and Inference of Neural Networks
|
2018
|
Eunhyeok Park
Sungjoo Yoo
Péter Vajda
|
1
|
+
PDF
Chat
|
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
|
2018
|
Benoit Jacob
Skirmantas Kligys
Bo Chen
Menglong Zhu
Matthew F. Tang
Andrew Howard
Hartwig Adam
Dmitry Kalenichenko
|
1
|
+
PDF
Chat
|
MobileNetV2: Inverted Residuals and Linear Bottlenecks
|
2018
|
Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
|
1
|
+
PDF
Chat
|
Learning to Quantize Deep Networks by Optimizing Quantization Intervals With Task Loss
|
2019
|
Sangil Jung
Changyong Son
Seohyung Lee
Jinwoo Son
Jae‐Joon Han
Youngjun Kwak
Sung Ju Hwang
Changkyu Choi
|
1
|
+
|
Theory of Deep Learning III: explaining the non-overfitting puzzle
|
2018
|
Tomaso Poggio
Kenji Kawaguchi
Qianli Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack D. Hidary
H. N. Mhaskar
|
1
|
+
PDF
Chat
|
MnasNet: Platform-Aware Neural Architecture Search for Mobile
|
2019
|
Mingxing Tan
Bo Chen
Ruoming Pang
Vijay Vasudevan
Mark Sandler
Andrew Howard
Quoc V. Le
|
1
|
+
PDF
Chat
|
VITON: An Image-Based Virtual Try-on Network
|
2018
|
Xintong Han
Zuxuan Wu
Zhe Wu
Ruichi Yu
Larry S. Davis
|
1
|
+
PDF
Chat
|
Graphonomy: Universal Human Parsing via Graph Transfer Learning
|
2019
|
Ke Gong
Yiming Gao
Xiaodan Liang
Xiaohui Shen
Meng Wang
Liang Lin
|
1
|
+
|
Model compression via distillation and quantization
|
2018
|
Antonio Polino
Razvan Pascanu
Dan Alistarh
|
1
|
+
PDF
Chat
|
HAQ: Hardware-Aware Automated Quantization With Mixed Precision
|
2019
|
Kuan Wang
Zhijian Liu
Yujun Lin
Ji Lin
Song Han
|
1
|
+
PDF
Chat
|
Low-bit Quantization of Neural Networks for Efficient Inference
|
2019
|
Yoni Choukroun
Eli Kravchik
Fan Yang
Pavel Kisilev
|
1
|
+
PDF
Chat
|
Designing Network Design Spaces
|
2020
|
Ilija Radosavovic
Raj Prateek Kosaraju
Ross Girshick
Kaiming He
Piotr Dollár
|
1
|
+
|
Training Generative Adversarial Networks with Limited Data
|
2020
|
Tero Karras
Miika Aittala
Janne Hellsten
Samuli Laine
Jaakko Lehtinen
Timo Aila
|
1
|
+
PDF
Chat
|
ZeroQ: A Novel Zero Shot Quantization Framework
|
2020
|
Yaohui Cai
Zhewei Yao
Zhen Dong
Amir Gholami
Michael W. Mahoney
Kurt Keutzer
|
1
|
+
PDF
Chat
|
The Knowledge Within: Methods for Data-Free Model Compression
|
2020
|
Matan Haroush
Itay Hubara
Elad Hoffer
Daniel Soudry
|
1
|
+
PDF
Chat
|
Controllable Person Image Synthesis With Attribute-Decomposed GAN
|
2020
|
Yifang Men
Yiming Mao
Yuning Jiang
Wei‐Ying Ma
Zhouhui Lian
|
1
|
+
PDF
Chat
|
Analyzing and Improving the Image Quality of StyleGAN
|
2020
|
Tero Karras
Samuli Laine
Miika Aittala
Janne Hellsten
Jaakko Lehtinen
Timo Aila
|
1
|
+
|
Denoising Diffusion Probabilistic Models
|
2020
|
Jonathan Ho
Ajay N. Jain
Pieter Abbeel
|
1
|
+
|
EasyQuant: Post-training Quantization via Scale Optimization
|
2020
|
Di Wu
Qi Tang
Zhao Yong-le
Ming Zhang
Fu Ying
Debing Zhang
|
1
|
+
PDF
Chat
|
Generative adversarial networks
|
2020
|
Ian Goodfellow
Jean Pouget-Abadie
Mehdi Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
|
1
|
+
PDF
Chat
|
Generative Low-Bitwidth Data Free Quantization
|
2020
|
Shoukai Xu
Haokun Li
Bohan Zhuang
Jing Liu
Jiezhang Cao
Chuangrun Liang
Mingkui Tan
|
1
|
+
PDF
Chat
|
Post-training Piecewise Linear Quantization for Deep Neural Networks
|
2020
|
Jun Fang
Ali Shafiee
Hamzah Abdel-Aziz
David Thorsley
Georgios Georgiadis
Joseph Hassoun
|
1
|
+
PDF
Chat
|
Do Not Mask What You Do Not Need to Mask: A Parser-Free Virtual Try-On
|
2020
|
Thibaut Issenhuth
Jérémie Mary
Clément Calauzènes
|
1
|
+
|
Denoising Diffusion Implicit Models
|
2020
|
Jiaming Song
Chenlin Meng
Stefano Ermon
|
1
|
+
PDF
Chat
|
A Survey of Quantization Methods for Efficient Neural Network Inference
|
2022
|
Amir Gholami
Sehoon Kim
Zhen Dong
Zhewei Yao
Michael W. Mahoney
Kurt Keutzer
|
1
|
+
PDF
Chat
|
Image Super-Resolution Via Iterative Refinement
|
2022
|
Chitwan Saharia
Jonathan Ho
William Chan
Tim Salimans
David J. Fleet
Mohammad Norouzi
|
1
|
+
|
Learning Transferable Visual Models From Natural Language Supervision
|
2021
|
Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya Ramesh
Gabriel Goh
Sandhini Agarwal
Girish Sastry
Amanda Askell
Pamela Mishkin
Jack Clark
|
1
|
+
|
BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction
|
2021
|
Yuhang Li
Ruihao Gong
Xu Tan
Yang Yang
Peng Hu
Qi Zhang
Fengwei Yu
Wei Wang
Shi Gu
|
1
|
+
PDF
Chat
|
VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization
|
2021
|
Seung-Hwan Choi
Sunghyun Park
Minsoo Lee
Jaegul Choo
|
1
|
+
PDF
Chat
|
Diversifying Sample Generation for Accurate Data-Free Quantization
|
2021
|
Xiangguo Zhang
Haotong Qin
Yifu Ding
Ruihao Gong
Qinghua Yan
Renshuai Tao
Yuhang Li
Fengwei Yu
Xianglong Liu
|
1
|
+
|
Cascaded Diffusion Models for High Fidelity Image Generation
|
2021
|
Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
|
1
|