Dawei Yang

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Panoptic-FlashOcc: An Efficient Baseline to Marry Semantic Occupancy with Panoptic via Instance Center 2024 Zichen Yu
Changyong Shu
Qianpu Sun
Junjie Linghu
Xiaobao Wei
Jiangyong Yu
Zongdai Liu
Dawei Yang
Hui Li
Yan Chen
+ PDF Chat M&M VTO: Multi-Garment Virtual Try-On and Editing 2024 Luyang Zhu
Yingwei Li
Nan Liu
Hao Peng
Dawei Yang
Ira Kemelmacher-Shlizerman
+ PDF Chat PD-Quant: Post-Training Quantization Based on Prediction Difference Metric 2023 Jiawei Liu
Lin Niu
Zhihang Yuan
Dawei Yang
Xinggang Wang
Wenyu Liu
+ PDF Chat TryOnDiffusion: A Tale of Two UNets 2023 Luyang Zhu
Dawei Yang
Tyler Zhu
Fitsum A. Reda
William Chan
Chitwan Saharia
Mohammad Norouzi
Ira Kemelmacher-Shlizerman
+ Benchmarking the Reliability of Post-training Quantization: a Particular Focus on Worst-case Performance 2023 Zhihang Yuan
Jiawei Liu
Jiaxiang Wu
Dawei Yang
Qiang Wu
Guangyu Sun
Wenyu Liu
Xinggang Wang
Bingzhe Wu
+ Improving Post-Training Quantization on Object Detection with Task Loss-Guided Lp Metric 2023 Lin Niu
Jiawei Liu
Zhihang Yuan
Dawei Yang
Xinggang Wang
Wenyu Liu
+ Reference-based OCT Angiogram Super-resolution with Learnable Texture Generation 2023 Yuyan Ruan
Dawei Yang
Ziqi Tang
An Ran Ran
Carol Y. Cheung
Hao Chen
+ TryOnDiffusion: A Tale of Two UNets 2023 Luyang Zhu
Dawei Yang
Tyler Zhu
Fitsum A. Reda
William Chan
Chitwan Saharia
Mohammad Norouzi
Ira Kemelmacher-Shlizerman
+ FlashOcc: Fast and Memory-Efficient Occupancy Prediction via Channel-to-Height Plugin 2023 Zichen Yu
Changyong Shu
Jiajun Deng
Kangjie Lu
Zongdai Liu
Jiangyong Yu
Dawei Yang
Hui Li
Yan Chen
+ PDF Chat A Systematic Review on Affective Computing: Emotion Models, Databases, and Recent Advances 2022 Yan Wang
Wei Song
Wei Tao
Antonio Liotta
Dawei Yang
Xinlei Li
Shuyong Gao
Yixuan Sun
Weifeng Ge
Wei Zhang
+ A Systematic Review on Affective Computing: Emotion Models, Databases, and Recent Advances 2022 Yan Wang
Wei Song
Wei Tao
Antonio Liotta
Dawei Yang
Xinlei Li
Shuyong Gao
Yixuan Sun
Weifeng Ge
Wei Zhang
+ PD-Quant: Post-Training Quantization based on Prediction Difference Metric 2022 Jiawei Liu
Lin Niu
Zhihang Yuan
Dawei Yang
Xinggang Wang
Wenyu Liu
+ Ergodic optimization for some dynamical systems beyond uniform hyperbolicity 2020 Dawei Yang
Jinhua Zhang
+ On the partial hyperbolicity of robustly transitive sets with singularities 2020 Xiao Wen
Dawei Yang
+ Adversarial Objects Against LiDAR-Based Autonomous Driving Systems 2019 Yulong Cao
Chaowei Xiao
Dawei Yang
Jing Fang
Ruigang Yang
Mingyan Liu
Bo Li
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ Deep Unsupervised Learning using Nonequilibrium Thermodynamics 2015 Jascha Sohl‐Dickstein
Eric A. Weiss
Niru Maheswaranathan
Surya Ganguli
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation 2013 Yoshua Bengio
Nicholas Léonard
Aaron Courville
1
+ PDF Chat Perceptual Losses for Real-Time Style Transfer and Super-Resolution 2016 Justin Johnson
Alexandre Alahi
Li Fei-Fei
1
+ DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients 2016 Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
1
+ PDF Chat Towards Accurate Multi-person Pose Estimation in the Wild 2017 George Papandreou
Tyler Zhu
Nori Kanazawa
Alexander Toshev
Jonathan Tompson
Chris Bregler
Kevin Murphy
1
+ PDF Chat Deep Learning with Low Precision by Half-Wave Gaussian Quantization 2017 Zhaowei Cai
Xiaodong He
Jian Sun
Nuno Vasconcelos
1
+ To prune, or not to prune: exploring the efficacy of pruning for model compression 2017 Michael Zhu
Suyog Gupta
1
+ PACT: Parameterized Clipping Activation for Quantized Neural Networks 2018 Jungwook Choi
Zhuo Wang
Swagath Venkataramani
Pierce Chuang
Vijayalakshmi Srinivasan
Kailash Gopalakrishnan
1
+ Quantizing deep convolutional networks for efficient inference: A whitepaper 2018 Raghuraman Krishnamoorthi
1
+ PDF Chat Toward Characteristic-Preserving Image-Based Virtual Try-On Network 2018 Bochao Wang
Huabin Zheng
Xiaodan Liang
Yimin Chen
Liang Lin
Meng Yang
1
+ PDF Chat LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks 2018 Dongqing Zhang
Jiaolong Yang
Dongqiangzi Ye
Gang Hua
1
+ Rethinking the Value of Network Pruning 2018 Zhuang Liu
Mingjie Sun
Tinghui Zhou
Gao Huang
Trevor Darrell
1
+ Improving Neural Network Quantization without Retraining using Outlier Channel Splitting 2019 Ritchie Zhao
Yuwei Hu
Jordan Dotzel
Christopher De
Zhiru Zhang
1
+ Learned Step Size Quantization 2019 Steven K. Esser
Jeffrey L. McKinstry
Deepika Bablani
Rathinakumar Appuswamy
Dharmendra S. Modha
1
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
1
+ Generative Modeling by Estimating Gradients of the Data Distribution 2019 Yang Song
Stefano Ermon
1
+ PDF Chat Value-Aware Quantization for Training and Inference of Neural Networks 2018 Eunhyeok Park
Sungjoo Yoo
Péter Vajda
1
+ PDF Chat Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference 2018 Benoit Jacob
Skirmantas Kligys
Bo Chen
Menglong Zhu
Matthew F. Tang
Andrew Howard
Hartwig Adam
Dmitry Kalenichenko
1
+ PDF Chat MobileNetV2: Inverted Residuals and Linear Bottlenecks 2018 Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
1
+ PDF Chat Learning to Quantize Deep Networks by Optimizing Quantization Intervals With Task Loss 2019 Sangil Jung
Changyong Son
Seohyung Lee
Jinwoo Son
Jae‐Joon Han
Youngjun Kwak
Sung Ju Hwang
Changkyu Choi
1
+ Theory of Deep Learning III: explaining the non-overfitting puzzle 2018 Tomaso Poggio
Kenji Kawaguchi
Qianli Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack D. Hidary
H. N. Mhaskar
1
+ PDF Chat MnasNet: Platform-Aware Neural Architecture Search for Mobile 2019 Mingxing Tan
Bo Chen
Ruoming Pang
Vijay Vasudevan
Mark Sandler
Andrew Howard
Quoc V. Le
1
+ PDF Chat VITON: An Image-Based Virtual Try-on Network 2018 Xintong Han
Zuxuan Wu
Zhe Wu
Ruichi Yu
Larry S. Davis
1
+ PDF Chat Graphonomy: Universal Human Parsing via Graph Transfer Learning 2019 Ke Gong
Yiming Gao
Xiaodan Liang
Xiaohui Shen
Meng Wang
Liang Lin
1
+ Model compression via distillation and quantization 2018 Antonio Polino
Razvan Pascanu
Dan Alistarh
1
+ PDF Chat HAQ: Hardware-Aware Automated Quantization With Mixed Precision 2019 Kuan Wang
Zhijian Liu
Yujun Lin
Ji Lin
Song Han
1
+ PDF Chat Low-bit Quantization of Neural Networks for Efficient Inference 2019 Yoni Choukroun
Eli Kravchik
Fan Yang
Pavel Kisilev
1
+ PDF Chat Designing Network Design Spaces 2020 Ilija Radosavovic
Raj Prateek Kosaraju
Ross Girshick
Kaiming He
Piotr Dollár
1
+ Training Generative Adversarial Networks with Limited Data 2020 Tero Karras
Miika Aittala
Janne Hellsten
Samuli Laine
Jaakko Lehtinen
Timo Aila
1
+ PDF Chat ZeroQ: A Novel Zero Shot Quantization Framework 2020 Yaohui Cai
Zhewei Yao
Zhen Dong
Amir Gholami
Michael W. Mahoney
Kurt Keutzer
1
+ PDF Chat The Knowledge Within: Methods for Data-Free Model Compression 2020 Matan Haroush
Itay Hubara
Elad Hoffer
Daniel Soudry
1
+ PDF Chat Controllable Person Image Synthesis With Attribute-Decomposed GAN 2020 Yifang Men
Yiming Mao
Yuning Jiang
Wei‐Ying Ma
Zhouhui Lian
1
+ PDF Chat Analyzing and Improving the Image Quality of StyleGAN 2020 Tero Karras
Samuli Laine
Miika Aittala
Janne Hellsten
Jaakko Lehtinen
Timo Aila
1
+ Denoising Diffusion Probabilistic Models 2020 Jonathan Ho
Ajay N. Jain
Pieter Abbeel
1
+ EasyQuant: Post-training Quantization via Scale Optimization 2020 Di Wu
Qi Tang
Zhao Yong-le
Ming Zhang
Fu Ying
Debing Zhang
1
+ PDF Chat Generative adversarial networks 2020 Ian Goodfellow
Jean Pouget-Abadie
Mehdi Mirza
Bing Xu
David Warde-Farley
Sherjil Ozair
Aaron Courville
Yoshua Bengio
1
+ PDF Chat Generative Low-Bitwidth Data Free Quantization 2020 Shoukai Xu
Haokun Li
Bohan Zhuang
Jing Liu
Jiezhang Cao
Chuangrun Liang
Mingkui Tan
1
+ PDF Chat Post-training Piecewise Linear Quantization for Deep Neural Networks 2020 Jun Fang
Ali Shafiee
Hamzah Abdel-Aziz
David Thorsley
Georgios Georgiadis
Joseph Hassoun
1
+ PDF Chat Do Not Mask What You Do Not Need to Mask: A Parser-Free Virtual Try-On 2020 Thibaut Issenhuth
Jérémie Mary
Clément Calauzènes
1
+ Denoising Diffusion Implicit Models 2020 Jiaming Song
Chenlin Meng
Stefano Ermon
1
+ PDF Chat A Survey of Quantization Methods for Efficient Neural Network Inference 2022 Amir Gholami
Sehoon Kim
Zhen Dong
Zhewei Yao
Michael W. Mahoney
Kurt Keutzer
1
+ PDF Chat Image Super-Resolution Via Iterative Refinement 2022 Chitwan Saharia
Jonathan Ho
William Chan
Tim Salimans
David J. Fleet
Mohammad Norouzi
1
+ Learning Transferable Visual Models From Natural Language Supervision 2021 Alec Radford
Jong Wook Kim
Chris Hallacy
Aditya Ramesh
Gabriel Goh
Sandhini Agarwal
Girish Sastry
Amanda Askell
Pamela Mishkin
Jack Clark
1
+ BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction 2021 Yuhang Li
Ruihao Gong
Xu Tan
Yang Yang
Peng Hu
Qi Zhang
Fengwei Yu
Wei Wang
Shi Gu
1
+ PDF Chat VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization 2021 Seung-Hwan Choi
Sunghyun Park
Minsoo Lee
Jaegul Choo
1
+ PDF Chat Diversifying Sample Generation for Accurate Data-Free Quantization 2021 Xiangguo Zhang
Haotong Qin
Yifu Ding
Ruihao Gong
Qinghua Yan
Renshuai Tao
Yuhang Li
Fengwei Yu
Xianglong Liu
1
+ Cascaded Diffusion Models for High Fidelity Image Generation 2021 Jonathan Ho
Chitwan Saharia
William Chan
David J. Fleet
Mohammad Norouzi
Tim Salimans
1