Laurent Lefèvre

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Stokes-Lagrange and Stokes-Dirac representations of $N$-dimensional port-Hamiltonian systems for modelling and control 2024 Antoine Bendimerad-Hohl
Ghislain Haine
Laurent Lefèvre
Denis Matignon
+ PDF Chat On implicit and explicit representations for 1D distributed port-Hamiltonian systems 2024 Antoine Bendimerad-Hohl
Denis Matignon
Ghislain Haine
Laurent Lefèvre
+ PDF Chat Reduced order in domain control of distributed parameter port-Hamiltonian systems via energy shaping 2024 Ning Liu
Yongxin Wu
Yann Le Gorrec
Laurent Lefèvre
Héctor Ramírez
+ On Stokes-Lagrange and Stokes-Dirac representations for 1D distributed port-Hamiltonian systems 2024 Antoine Bendimerad-Hohl
Denis Matignon
Ghislain Haine
Laurent Lefèvre
+ Reduced order in domain control of distributed parameter port-Hamiltonian systems via energy shaping 2023 Ning Liu
Yongxin Wu
Yann Le Gorrec
Laurent Lefèvre
Héctor Ramírez
+ Nonlinear Model Predictive Control for Uranium Extraction-Scrubbing Operation in Spent Nuclear Fuel Treatment Process 2023 Duc-Tri Vo
Ionela Prodan
Laurent Lefèvre
Vincent Vanel
Sylvain Costenoble
Binh Dinh
+ Implicit port-Hamiltonian systems: structure-preserving discretization for the nonlocal vibrations in a viscoelastic nanorod, and for a seepage model 2023 Antoine Bendimerad-Hohl
Ghislain Haine
Laurent Lefèvre
Denis Matignon
+ A Partitioned Finite Element Method (PFEM) for power-preserving discretization of port-Hamiltonian systems (pHs) with polynomial nonlinearity 2022 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
+ Dissipative Shallow Water Equations: a port-Hamiltonian formulation 2021 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
+ High Order Discrete-Time Control Based on Gauss-Legendre Collocation 2021 Paul Kotyczka
Christian James Martens
Laurent Lefèvre
+ A partitioned finite element method for power-preserving discretization of open systems of conservation laws 2020 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
+ Discrete-Time Control Design Based on Symplectic Integration: Linear Systems 2020 Paul Kotyczka
Laurent Lefèvre
+ PDF Chat Port-Hamiltonian modeling, discretization and feedback control of a circular water tank 2019 Flávio Luiz Cardoso-Ribeiro
Andrea Brugnoli
Denis Matignon
Laurent Lefèvre
+ Lumped port–Hamiltonian burning plasma control model 2019 Benjamin Vincent
R. Nouailletas
J.F. Artaud
Nicolas Hudon
Laurent Lefèvre
Denis Dochain
+ Discrete 1-D port-Hamiltonian burning plasma control model 2019 Benjamin Vincent
R. Nouailletas
J.F. Artaud
Nicolas Hudon
Laurent Lefèvre
Denis Dochain
+ PDF Chat Discrete-time port-Hamiltonian systems: A definition based on symplectic integration 2019 Paul Kotyczka
Laurent Lefèvre
+ PDF Chat Geometric spatial reduction for port-Hamiltonian systems 2019 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
+ Modelling of Tokamak plasmas as open GENERIC systems 2019 Benjamin Vincent
Nicolas Hudon
Laurent Lefèvre
Denis Dochain
+ PDF Chat Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems 2018 Paul Kotyczka
Bernhard Maschke
Laurent Lefèvre
+ Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation ⁎ ⁎P. Kotyczka received financial support as a part-time post-doctoral researcher (03/17–08/17) from the DFG-ANR funded project INFI-DHEM (no ANR-16-CE92-0028) and by a part-time visiting fellowship of Grenoble INP in summer term 2017. The work makes also part of the project KO 4750/1-1, funded by the German Research Foundation (DFG). 2018 Paul Kotyczka
Laurent Lefèvre
+ A structure-preserving Partitioned Finite Element Method for the 2D wave equation ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. 2018 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
+ Port-Hamiltonian modeling and reduction of a burning plasma system 2018 Benjamin Vincent
T. Vu
Nicolas Hudon
Laurent Lefèvre
Denis Dochain
+ Discrete-time port-Hamiltonian systems: A definition based on symplectic integration 2018 Paul Kotyczka
Laurent Lefèvre
+ On the use of structural invariants for the distributed control of infinite dimensional port-Hamiltonian systems 2017 Vincent Trenchant
Ngoc Minh Trang Vu
Héctor Ramírez
Laurent Lefèvre
Yann Le Gorrec
+ Symplectic discretization of Port Controlled Hamiltonian systems 2017 Laurent Lefèvre
Silviu Medianu
+ Structural identifiability of linear lossy Port-Controlled Hamiltonian systems 2016 Silviu Medianu
Ciprian Lupu
Laurent Lefèvre
Dumitru Popescu
+ PDF Chat Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries 2016 Ngoc Minh Trang Vu
Laurent Lefèvre
R. Nouailletas
+ A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks 2016 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
+ Distributed and backstepping boundary controls to achieve IDA-PBC design 2015 Ngoc Minh Trang Vu
Laurent Lefèvre
Rémy Nouailletas
+ Finite rank distributed control for the resistive diffusion equation using damping assignment 2015 Ngoc Minh Trang Vu
Laurent Lefèvre
Van Thang Pham
+ Structure preserving reduction for thermo magneto plasma control model 2014 Ngoc Minh Trang Vu
Laurent Lefèvre
Rémy Nouailletas
S. Brémond
+ Geometric discretization for a plasma control model 2013 Ngoc Minh Trang Vu
Laurent Lefèvre
Rémy Nouailletas
S. Brémond
+ Material balance and closure equations for plasmas in Tokamaks 2013 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
+ Geometric discretization for a plasma control model 2013 Ngoc Minh Trang Vu
Laurent Lefèvre
Rémy Nouailletas
S. Brémond
+ Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors 2012 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
+ PDF Chat Systèmes hamiltoniens à ports de dimension infinie. Réduction et propriétés spectrales 2011 Yann Le Gorrec
Peng Hui
Laurent Lefèvre
Boussad Hamroun
Françoise Couenne
+ PDF Chat Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws 2011 Redha Moulla
Laurent Lefèvre
Bernhard Maschke
+ PDF Chat Systèmes hamiltoniens à ports de dimension infinie : réduction et propriétés spectrales. 2011 Yann Le Gorrec
Peng Hui
Laurent Lefèvre
Boussad Hamroun
Françoise Couenne
+ Boundary control of nonlinear distributed parameters port-Hamiltonian models for the shallow water dynamics 2009 Alexandru Dimofte
Boussad Hamroun
Laurent Lefèvre
Eduardo Mendes
+ PDF Chat Port-Based modelling for open channel irrigation systems 2007 Boussad Hamroun
Laurent Lefèvre
Eduardo Mendes
+ ENERGY BASED DISCRETIZATION OF AN ADSORPTION COLUMN 2006 A. Baaiu
Françoise Couenne
Laurent Lefèvre
Yann Le Gorrec
M. Tayakout
+ Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods 2000 Laurent Lefèvre
Denis Dochain
S. Feyo de Azevedo
Alphonse Magnus
+ PASSIVITY OF LINEAR DELAY SYSTEMS 1999 Laurent Lefèvre
G. Dauphin-Tanguy
Joseph Lefèvre
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks 2016 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
8
+ PDF Chat Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems 2018 Paul Kotyczka
Bernhard Maschke
Laurent Lefèvre
7
+ PDF Chat Hamiltonian discretization of boundary control systems 2004 G. Golo
Viswanath Talasila
Arjan van der Schaft
Bernhard Maschke
7
+ PDF Chat Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws 2011 Redha Moulla
Laurent Lefèvre
Bernhard Maschke
5
+ Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators 2005 Yann Le Gorrec
Hans Zwart
Bernhard Maschke
5
+ The geometry of physics : an introduction 2004 Theodore Frankel
5
+ PDF Chat Symplectic spatial integration schemes for systems of balance equations 2017 Ngoc Minh Trang Vu
Laurent Lefèvre
R. Nouailletas
S. Brémond
5
+ Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in Tokamak reactors 2012 Ngoc Minh Trang Vu
Laurent Lefèvre
Bernhard Maschke
4
+ Canonical interconnection of discrete linear port-Hamiltonian systems 2013 Saïd Aoues
Damien Ebérard
Wilfrid Marquis-Favre
4
+ Discrete port-Hamiltonian systems 2005 Viswanath Talasila
Jesús Clemente-Gallardo
Arjan van der Schaft
3
+ Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations 2009 Ernst Hairer
Christian Lubich
Gerhard Wanner
3
+ Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems 2016 Paul Kotyczka
3
+ Structure preserving spatial discretization of 2D hyperbolic systems using staggered grids finite difference 2017 Vincent Trenchant
Héctor Ramírez
Yann Le Gorrec
Paul Kotyczka
3
+ Linear port-Hamiltonian descriptor systems 2018 Christopher Beattie
Volker Mehrmann
Hongguo Xu
Hans Zwart
3
+ A Practical Guide to Pseudospectral Methods 1996 Bengt Fornberg
3
+ PDF Chat Explicit simplicial discretization of distributed-parameter port-Hamiltonian systems 2013 Marko Šešlija
Jacquelien M.A. Scherpen
Arjan van der Schaft
3
+ PDF Chat Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations 2010 Boussad Hamroun
Alexandru Dimofte
Laurent Lefèvre
Eduardo Mendes
3
+ PDF Chat Applications of Lie Groups to Differential Equations 1993 Peter J. Olver
3
+ Geometric discretization for a plasma control model 2013 Ngoc Minh Trang Vu
Laurent Lefèvre
Rémy Nouailletas
S. Brémond
3
+ PDF Chat Port-Based modelling for open channel irrigation systems 2007 Boussad Hamroun
Laurent Lefèvre
Eduardo Mendes
3
+ A port-hamiltonian finite-element formulation for the maxwell equations 2013 Ortwin Farle
Daniel Klis
Martin Jochum
O. Floch
Romanus Dyczij‐Edlinger
3
+ PDF Chat Dirac manifolds 1990 Theodore James Courant
3
+ Twenty years of distributed port-Hamiltonian systems: a literature review 2020 Ramy Rashad
Federico Califano
Arjan van der Schaft
Stefano Stramigioli
3
+ Gradient Based Discrete-Time Modeling and Control of Hamiltonian Systems 2008 Leyla Gören‐Sümer
Yaprak Yalçın
3
+ PDF Chat Numerical Approximation of Port-Hamiltonian Systems for Hyperbolic or Parabolic PDEs with Boundary Control 2021 Andrea Brugnoli
Ghislain Haine
Anass Serhani
Xavier Vasseur
3
+ Power preserving model reduction of 2D vibro-acoustic system: A port Hamiltonian approach 2015 Yongxin Wu
Boussad Hamroun
Yann Le Gorrec
Bernhard Maschke
3
+ Canonical Interdomain Coupling in Distributed Parameter Systems: An Extension of the Symplectic Gyrator 2001 Bernhard Maschke
Arjan van der Schaft
3
+ Strukturerhaltende Diskretisierung verteilt-parametrischer Port-Hamiltonscher Systeme mittels finiter Elemente 2014 Ortwin Farle
Rolf-Björn Baltes
Romanus Dyczij‐Edlinger
2
+ A partitioned finite element method for power-preserving discretization of open systems of conservation laws 2020 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
2
+ PDF Chat Discrete-time port-Hamiltonian systems: A definition based on symplectic integration 2019 Paul Kotyczka
Laurent Lefèvre
2
+ A structure-preserving Partitioned Finite Element Method for the 2D wave equation ⁎ ⁎This work is supported by the project ANR-16-CE92-0028, entitled Interconnected Infinite-Dimensional systems for Heterogeneous Media, INFIDHEM, financed by the French National Research Agency (ANR). Further information is available at https://websites.isae-supaero.fr/infidhem/the-project/. 2018 Flávio Luiz Cardoso-Ribeiro
Denis Matignon
Laurent Lefèvre
2
+ PDF Chat Port-Hamiltonian modeling, discretization and feedback control of a circular water tank 2019 Flávio Luiz Cardoso-Ribeiro
Andrea Brugnoli
Denis Matignon
Laurent Lefèvre
2
+ A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows 2017 Robert Altmann
Philipp Schulze
2
+ The FEniCS Project Version 1.5 2015 Martin Sandve Alnæs
Jan Blechta
Johan Hake
August Johansson
Benjamin Kehlet
Anders Logg
Chris Richardson
Johannes Ring
Marie E. Rognes
Garth N. Wells
2
+ A First Course in Numerical Analysis 1966 Herbert Maisel
Anthony Ralston
2
+ Port-based modelling and geometric reduction for open channel irrigation systems 2007 Boussad Hamroun
Laurent Lefèvre
Eduardo Mendes
2
+ A Hamiltonian vorticity–dilatation formulation of the compressible Euler equations 2014 Mónika Polner
J.J.W. van der Vegt
2
+ PDF Chat Symmetry and reduction in implicit generalized Hamiltonian systems 2001 G. Blankenstein
Arjan van der Schaft
2
+ PDF Chat Geometric pseudospectral method for spatial integration of dynamical systems 2011 Redha Moulla
Laurent Lefèvre
Bernhard Maschke
2
+ PDF Chat Differential Forms with Applications to the Physical Sciences 1963 Harley Flanders
2
+ PDF Chat Spaces of Finite Element Differential Forms 2012 Douglas N. Arnold
2
+ PDF Chat Applications of lie groups to differential equations 1990 Peter J. Olver
2
+ PDF Chat An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators 1992 Bernhard Maschke
Arjan van der Schaft
P.C. Breedveld
2
+ Dirac Structures and Integrability of Nonlinear Evolution Equations 1993 I. Ya. Dorfman
2
+ PDF Chat Hamiltonian formulation and analysis of a collisionless fluid reconnection model 2008 E. Tassi
P. Morrison
F. L. Waelbroeck
D. Grasso
2
+ PDF Chat Port Hamiltonian formulation of infinite dimensional systems I. Modeling 2004 Alessandro Macchelli
Arjan van der Schaft
Claudio Melchiorri
2
+ PDF Chat Port-Hamiltonian discretization for open channel flows 2012 Ramkrishna Pasumarthy
V.R. Ambati
Arjan van der Schaft
2
+ PDF Chat A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients 2012 Federico Bribiesca Argomedo
Christophe Prieur
Emmanuel Witrant
S. Brémond
2
+ Multi-Symplectic Runge–Kutta Collocation Methods for Hamiltonian Wave Equations 2000 Sebastian Reich
2
+ New development in freefem++ 2012 Frédéric Hecht
2