Frederik Veldman

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Taras Bodnar 2
Nestor Parolya 2
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Testing for independence of large dimensional vectors 2019 Taras Bodnar
Holger Dette
Nestor Parolya
2
+ PDF Chat Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size 2002 Olivier Ledoit
Michael Wolf
2
+ PDF Chat Spectral Analysis of Large Dimensional Random Matrices 2009 Zhidong Bai
Jack W. Silverstein
2
+ An Introduction to Multivariate Statistical Analysis. 1985 C. J. Skinner
T. W. Anderson
2
+ On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix 2014 Taras Bodnar
Arjun K. Gupta
Nestor Parolya
2
+ Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices 1995 Jack W. Silverstein
Sang Il Choi
1
+ PDF Chat Random matrix theory in statistics: A review 2013 Debashis Paul
Alexander Aue
1
+ Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing 2015 Shurong Zheng
Zhidong Bai
Jianfeng Yao
1
+ Some optimal multivariate tests 1971 S. John
1
+ PDF Chat Some Tests Concerning the Covariance Matrix in High Dimensional Data 2005 Muni S. Srivastava
1
+ DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES 1967 V A Marčenko
L. А. Pastur
1
+ PDF Chat A well-conditioned estimator for large-dimensional covariance matrices 2003 Olivier Ledoit
Michael Wolf
1
+ A new test for sphericity of the covariance matrix for high dimensional data 2010 Thomas J. Fisher
Xiaoqian Sun
Colin Gallagher
1
+ PDF Chat Estimation of a Covariance Matrix under Stein's Loss 1985 Dipak K. Dey
Cidambi Srinivasan
1
+ PDF Chat On Some Test Criteria for Covariance Matrix 1973 Hisao Nagao
1
+ Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data 2008 Tatsuya Kubokawa
Muni S. Srivastava
1
+ Direct shrinkage estimation of large dimensional precision matrix 2015 Taras Bodnar
Arjun K. Gupta
Nestor Parolya
1
+ PDF Chat Some New Test Criteria in Multivariate Analysis 1955 K. C. S. Pillai
1
+ On Some Tests of the Covariance Matrix Under General Conditions 2006 Arjun K. Gupta
Jin Xu
1
+ An exact test about the covariance matrix 2014 Arjun K. Gupta
Taras Bodnar
1
+ Optimal shrinkage estimator for high-dimensional mean vector 2018 Taras Bodnar
Ostap Okhrin
Nestor Parolya
1
+ PDF Chat Estimation of the global minimum variance portfolio in high dimensions 2017 Taras Bodnar
Nestor Parolya
Wolfgang Schmid
1
+ PDF Chat Tests for the Weights of the Global Minimum Variance Portfolio in a High-Dimensional Setting 2019 Taras Bodnar
Solomiia Dmytriv
Nestor Parolya
Wolfgang Schmid
1
+ PDF Chat Statistical Inference for the Expected Utility Portfolio in High Dimensions 2020 Taras Bodnar
Solomiia Dmytriv
Yarema Okhrin
Nestor Parolya
Wolfgang Schmid
1
+ Improved multivariate normal mean estimation with unknown covariance when $p$ is greater than $n$ 2012 Didier Chételat
Martin T. Wells
1
+ PDF Chat Eigenvectors of some large sample covariance matrix ensembles 2010 Olivier Ledoit
Sandrine Péché
1
+ Recent advances in shrinkage-based high-dimensional inference 2021 Olha Bodnar
Taras Bodnar
Nestor Parolya
1
+ PDF Chat Optimal Shrinkage-Based Portfolio Selection in High Dimensions 2021 Taras Bodnar
Yarema Okhrin
Nestor Parolya
1
+ Large Sample Covariance Matrices and High-Dimensional Data Analysis 2015 Jianfeng Yao
Shurong Zheng
Zhidong Bai
1
+ PDF Chat Minimax Estimators of a Normal Mean Vector for Arbitrary Quadratic Loss and Unknown Covariance Matrix 1986 Leon Jay Gleser
1
+ Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices 2014 Cheng Wang
Tiejun Tong
Longbing Cao
Miao Bai-qi
1
+ PDF Chat CLT for linear spectral statistics of large-dimensional sample covariance matrices 2004 Zhidong Bai
Jack W. Silverstein
1
+ PDF Chat Limiting laws of coherence of random matrices with applications to testing covariance structure and construction of compressed sensing matrices 2011 Tommaso Cai
Tiefeng Jiang
1
+ PDF Chat Minimax Estimation of a Normal Mean Vector for Arbitrary Quadratic Loss and Unknown Covariance Matrix 1977 James O. Berger
Mary Ellen Bock
Lawrence D. Brown
George Casella
Leon Jay Gleser
1