J. Liu

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ The limits and potentials of deep learning for robotics 2018 Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
Raia Hadsell
Dieter Fox
Jürgen Leitner
Ben Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
1
+ PDF Chat Deep Lagrangian Networks for end-to-end learning of energy-based control for under-actuated systems 2019 Michael Lutter
Kim D. Listmann
Jan Peters
1
+ PDF Chat Cautious Model Predictive Control Using Gaussian Process Regression 2019 Lukas Hewing
Juraj Kabzan
Melanie N. Zeilinger
1
+ PDF Chat Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture 2021 Sina Amini Niaki
Ehsan Haghighat
Trevor Campbell
Anoush Poursartip
Reza Vaziri
1
+ PDF Chat Sim-to-Real Transfer in Deep Reinforcement Learning for Robotics: a Survey 2020 Wenshuai Zhao
Jorge Peña Queralta
Tomi Westerlund
1
+ Modeling System Dynamics with Physics-Informed Neural Networks Based on Lagrangian Mechanics 2020 Manuel A. Roehrl
Thomas A. Runkler
Veronika Brandtstetter
Michel Tokic
Stefan Obermayer
1
+ Physics-informed Neural Networks-based Model Predictive Control for Multi-link Manipulators 2022 Jonas Nicodemus
Jonas Kneifl
Jörg Fehr
Benjamin Unger
1
+ PDF Chat Combining physics and deep learning to learn continuous-time dynamics models 2023 Michael Lutter
Jan Peters
1
+ PDF Chat Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges 2023 Cosimo Della Santina
Christian Duriez
Daniela Rus
1
+ PDF Chat Optimal control of PDEs using physics-informed neural networks 2022 Saviz Mowlavi
Saleh Nabi
1
+ Learning the dynamics of particle-based systems with Lagrangian graph neural networks 2023 Ravinder Bhattoo
Sayan Ranu
N. M. Anoop Krishnan
1
+ PDF Chat RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed Neural Network 2023 S. K. Sanyal
Kaushik Roy
1