Hongchang Gao

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Gradient-Free Method for Heavily Constrained Nonconvex Optimization 2024 Wanli Shi
Hongchang Gao
Bin Gu
+ PDF Chat AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation 2024 Peiyu Liang
Hongchang Gao
Xubin He
+ PDF Chat AMOSL: Adaptive Modality-Wise Structure Learning in Multi-View Graph Neural Networks for Enhanced Unified Representation 2024 Peiyu Liang
Hongchang Gao
Xubin He
+ Decentralized Stochastic Compositional Gradient Descent for AUPRC Maximization 2024 Hongchang Gao
Yubin Duan
Yihan Zhang
Jie Wu
+ PDF Chat Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models 2023 Lu Dong
Zhiqiang Wang
Teng Wang
Weili Guan
Hongchang Gao
Feng Zheng
+ PDF Chat When Decentralized Optimization Meets Federated Learning 2023 Hongchang Gao
My T. Thai
Jie Wu
+ Federated Compositional Deep AUC Maximization 2023 Xinwen Zhang
Yihan Zhang
Tianbao Yang
Richard Souvenir
Hongchang Gao
+ Can Decentralized Stochastic Minimax Optimization Algorithms Converge Linearly for Finite-Sum Nonconvex-Nonconcave Problems? 2023 Yihan Zhang
Wenhao Jiang
Feng Zheng
Chiu C. Tan
Xinghua Shi
Hongchang Gao
+ When Decentralized Optimization Meets Federated Learning 2023 Hongchang Gao
My T. Thai
Jie Wu
+ Stochastic Multi-Level Compositional Optimization Algorithms over Networks with Level-Independent Convergence Rate 2023 Hongchang Gao
+ Achieving Linear Speedup in Decentralized Stochastic Compositional Minimax Optimization 2023 Hongchang Gao
+ Set-level Guidance Attack: Boosting Adversarial Transferability of Vision-Language Pre-training Models 2023 Lu Dong
Zhiqiang Wang
Teng Wang
Weili Guan
Hongchang Gao
Feng Zheng
+ On the Communication Complexity of Decentralized Bilevel Optimization 2023 Yihan Zhang
My T. Thai
Jie Wu
Hongchang Gao
+ On the Convergence of Distributed Stochastic Bilevel Optimization Algorithms over a Network 2022 Hongchang Gao
Bin Gu
My T. Thai
+ Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems 2022 Hongchang Gao
+ Can Stochastic Zeroth-Order Frank-Wolfe Method Converge Faster for Non-Convex Problems? 2020 Hongchang Gao
Heng Huang
+ Periodic Stochastic Gradient Descent with Momentum for Decentralized Training 2020 Hongchang Gao
Heng Huang
+ Adaptive Serverless Learning 2020 Hongchang Gao
Heng Huang
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Communication Compression for Decentralized Training 2018 Hanlin Tang
Shaoduo Gan
Ce Zhang
Tong Zhang
Liu Ji
2
+ signSGD: Compressed Optimisation for Non-Convex Problems 2018 Jeremy Bernstein
Yu-Xiang Wang
Kamyar Azizzadenesheli
Animashree Anandkumar
2
+ Robust and Communication-Efficient Collaborative Learning 2019 Amirhossein Reisizadeh
Hossein Taheri
Aryan Mokhtari
Hamed Hassani
Ramtin Pedarsani
2
+ A Linearly Convergent Proximal Gradient Algorithm for Decentralized Optimization 2019 Sulaiman A. Alghunaim
Kun Yuan
Ali H. Sayed
2
+ Sparsified SGD with Memory 2018 Sebastian U. Stich
Jean-Baptiste Cordonnier
Martin Jaggi
2
+ QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding 2016 Dan Alistarh
Demjan Grubic
Jerry Li
Ryota Tomioka
Milan Vojnović
2
+ TernGrad: ternary gradients to reduce communication in distributed deep learning 2017 Wei Wen
Cong Xu
Feng Yan
Chunpeng Wu
Yandan Wang
Yiran Chen
Hai Li
2
+ PDF Chat Optimal Rates for Zero-Order Convex Optimization: The Power of Two Function Evaluations 2015 John C. Duchi
Michael I. Jordan
Martin J. Wainwright
Andre Wibisono
1
+ On the Global Linear Convergence of Frank-Wolfe Optimization Variants 2015 Simon Lacoste-Julien
Martin Jaggi
1
+ Conditional Gradient Sliding for Convex Optimization 2016 Guanghui Lan
Yi Zhou
1
+ Convergence Rate of Frank-Wolfe for Non-Convex Objectives 2016 Simon Lacoste-Julien
1
+ Wide & Deep Learning for Recommender Systems 2016 Heng-Tze Cheng
Levent Koç
Jeremiah Harmsen
Tal Shaked
Tushar Chandra
Hrishi Aradhye
Glen Anderson
Greg S. Corrado
Wei Koong Chai
Mustafa Ispir
1
+ PDF Chat Deep Visual-Semantic Alignments for Generating Image Descriptions 2016 Andrej Karpathy
Li Fei-Fei
1
+ PDF Chat Modeling Context in Referring Expressions 2016 Licheng Yu
Patrick Poirson
Shan Yang
Alexander C. Berg
Tamara L. Berg
1
+ PDF Chat SPICE: Semantic Propositional Image Caption Evaluation 2016 Peter Anderson
Basura Fernando
Mark Johnson
Stephen Jay Gould
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ PDF Chat Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models 2016 Bryan A. Plummer
Liwei Wang
Chris M. Cervantes
Juan C. Caicedo
Julia Hockenmaier
Svetlana Lazebnik
1
+ Optimal algorithms for smooth and strongly convex distributed optimization in networks 2017 Kevin G. Seaman
Francis Bach
Sébastien Bubeck
Yin Tat Lee
Laurent Massoulié
1
+ PDF Chat Distance Metric Learning Using Graph Convolutional Networks: Application to Functional Brain Networks 2017 Sofia Ira Ktena
Sarah Parisot
Enzo Ferrante
Martin Rajchl
Matthew Lee
Ben Glocker
Daniel Rueckert
1
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
1
+ PDF Chat Boosting Adversarial Attacks with Momentum 2018 Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
1
+ On the Convergence of Adam and Beyond 2019 Sashank J. Reddi
Satyen Kale
Sanjiv Kumar
1
+ On the Differentiability of the Solution to Convex Optimization Problems 2018 Shane Barratt
1
+ Local SGD Converges Fast and Communicates Little 2018 Sebastian U. Stich
1
+ Spectral Multigraph Networks for Discovering and Fusing Relationships in Molecules 2018 B. A. Knyazev
Xiao Mei Lin
Mohamed R. Amer
Graham W. Taylor
1
+ Applied Federated Learning: Improving Google Keyboard Query Suggestions 2018 Timothy T. Yang
Galen Andrew
Hubert Eichner
Haicheng Sun
Wei Li
Nicholas Kong
Daniel Ramage
Françoise Beaufays
1
+ Gromov-Wasserstein Learning for Graph Matching and Node Embedding 2019 Hongteng Xu
Dixin Luo
Hongyuan Zha
Lawrence Carin
1
+ Complexities in Projection-Free Stochastic Non-convex Minimization 2019 Zebang Shen
Cong Fang
Peilin Zhao
Junzhou Huang
Hui Qian
1
+ On the Linear Speedup Analysis of Communication Efficient Momentum SGD for Distributed Non-Convex Optimization 2019 Hao Yu
Rong Jin
Sen Yang
1
+ DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017 Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
1
+ PDF Chat Multi-GCN: Graph Convolutional Networks for Multi-View Networks, with Applications to Global Poverty 2019 Muhammad Raza Khan
Joshua Blumenstock
1
+ Hierarchical Graph Representation Learning with Differentiable Pooling 2018 Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
Jure Leskovec
1
+ Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates 2018 Krishnakumar Balasubramanian
Saeed Ghadimi
1
+ Stochastic Gradient Push for Distributed Deep Learning 2018 Mahmoud Assran
Nicolas Loizou
Nicolas Ballas
Michael Rabbat
1
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Takáč
1
+ How Powerful are Graph Neural Networks? 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
1
+ Black-Box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers 2018 Ji Gao
Jack Lanchantin
Mary Lou Soffa
Yanjun Qi
1
+ PDF Chat Improving Transferability of Adversarial Examples With Input Diversity 2019 Cihang Xie
Zhishuai Zhang
Yuyin Zhou
Song Bai
Jianyu Wang
Zhou Ren
Alan Yuille
1
+ PDF Chat CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters 2018 Ron Levie
Federico Monti
Xavier Bresson
Michael M. Bronstein
1
+ Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization 2018 Sijia Liu
Bhavya Kailkhura
Pin‐Yu Chen
Paishun Ting
Shiyu Chang
Lisa Amini
1
+ Decentralized Deep Learning with Arbitrary Communication Compression 2019 Anastasia Koloskova
Tao Lin
Sebastian U. Stich
Martin Jaggi
1
+ SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator 2018 Cong Fang
Chris Junchi Li
Zhouchen Lin
Tong Zhang
1
+ Non-convex Finite-Sum Optimization Via SCSG Methods 2017 Lihua Lei
Cheng Ju
Jianbo Chen
Michael I. Jordan
1
+ Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training 2018 Yujun Lin
Song Han
Huizi Mao
Yu Wang
William J. Dally
1
+ PDF Chat Towards Evaluating the Robustness of Neural Networks 2017 Nicholas Carlini
David Wagner
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016 Michaël Defferrard
Xavier Bresson
Pierre Vandergheynst
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks 2019 Jiadong Lin
Chuanbiao Song
Kun He
Liwei Wang
John E. Hopcroft
1