Joyce Zhou

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat 'It's Reducing a Human Being to a Percentage': Perceptions of Justice in Algorithmic Decisions 2018 Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
Nigel Shadbolt
2
+ Keeping Community in the Loop: Understanding Wikipedia Stakeholder Values for Machine Learning-Based Systems 2020 C. Estelle Smith
Bowen Yu
Anjali Srivastava
Aaron Halfaker
Loren Terveen
Haiyi Zhu
2
+ Explainable machine learning in deployment 2020 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
2
+ Optimizing AI for Teamwork. 2020 Gagan Bansal
Besmira Nushi
Ece Kamar
Eric Horvitz
Daniel S. Weld
2
+ PDF Chat "Why is 'Chicago' deceptive?" Towards Building Model-Driven Tutorials for Humans 2020 Vivian Lai
Han Liu
Chenhao Tan
2
+ Learning to Complement Humans 2020 Bryan Wilder
Eric Horvitz
Ece Kamar
2
+ Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior? 2020 Peter Hase
Mohit Bansal
2
+ PDF Chat Ups and Downs: Modeling the Visual Evolution of Fashion Trends with One-Class Collaborative Filtering 2016 Ruining He
Julian McAuley
2
+ Manipulating and Measuring Model Interpretability 2018 Forough Poursabzi-Sangdeh
Daniel G. Goldstein
Jake M. Hofman
Jennifer Wortman Vaughan
Hanna Wallach
2
+ Why Interpretability in Machine Learning? An Answer Using Distributed Detection and Data Fusion Theory. 2018 Kush R. Varshney
Prashant Khanduri
Pranay Sharma
Shan Zhang
Pramod K. Varshney
2
+ PDF Chat Proxy tasks and subjective measures can be misleading in evaluating explainable AI systems 2020 Zana Buçinca
Phoebe Lin
Krzysztof Z. Gajos
Elena L. Glassman
2
+ PDF Chat Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making 2020 Yunfeng Zhang
Q. Vera Liao
Rachel Bellamy
2
+ PDF Chat The Mythos of Model Interpretability 2018 Zachary C. Lipton
2
+ PDF Chat Interpreting Recurrent and Attention-Based Neural Models: a Case Study on Natural Language Inference 2018 Reza Ghaeini
Xiaoli Z. Fern
Prasad Tadepalli
2
+ Investigating Human + Machine Complementarity for Recidivism Predictions 2018 Sarah Tan
Julius Adebayo
Kori Inkpen
Ece Kamar
2
+ PDF Chat Do explanations make VQA models more predictable to a human? 2018 Arjun Chandrasekaran
Viraj Prabhu
Deshraj Jain
Prithvijit Chattopadhyay
Devi Parikh
2
+ PDF Chat On Human Predictions with Explanations and Predictions of Machine Learning Models 2019 Vivian Lai
Chenhao Tan
2
+ PDF Chat Learning Attitudes and Attributes from Multi-aspect Reviews 2012 Julian McAuley
Jure Leskovec
Dan Jurafsky
2
+ Quantifying Interpretability and Trust in Machine Learning Systems 2019 Philipp Schmidt
Felix Bießmann
2
+ PDF Chat Incentivizing High Quality Crowdwork 2015 Chien-Ju Ho
Aleksandrs Slivkins
Siddharth Suri
Jennifer Wortman Vaughan
2
+ The Isotonic Regression Problem and its Dual 1972 Richard E. Barlow
H. D. Brunk
2
+ A Human-Grounded Evaluation of SHAP for Alert Processing. 2019 Hilde Weerts
Werner van Ipenburg
Mykola Pechenizkiy
2
+ PDF Chat The mythos of model interpretability 2018 Zachary C. Lipton
2
+ Interpretable and Explorable Approximations of Black Box Models 2017 Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
2
+ Natural Language Generation enhances human decision-making with uncertain information 2016 Dimitra Gkatzia
Oliver Lemon
Verena Rieser
2
+ PDF Chat Teaching Categories to Human Learners with Visual Explanations 2018 Oisin Mac Aodha
Shihan Su
Yuxin Chen
Pietro Perona
Yisong Yue
2
+ PDF Chat The challenge of crafting intelligible intelligence 2019 Daniel S. Weld
Gagan Bansal
2
+ RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019 Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Luke Zettlemoyer
Veselin Stoyanov
2
+ How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation. 2018 Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
Sam Gershman
Finale Doshi‐Velez
2
+ PDF Chat Ups and Downs 2016 Ruining He
Julian McAuley
1
+ Rationalizing Neural Predictions 2016 Tao LeĂ­
Regina Barzilay
Tommi Jaakkola
1
+ A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks 2016 Dan Hendrycks
Kevin Gimpel
1
+ PDF Chat Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration 2017 Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Eric Horvitz
1
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
1
+ Explanation in artificial intelligence: Insights from the social sciences 2018 Tim Miller
1
+ AllenNLP Interpret: A Framework for Explaining Predictions of NLP Models 2019 Eric Wallace
Jens Tuyls
Junlin Wang
Sanjay Subramanian
Matt Gardner
Sameer Singh
1
+ ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning 2020 Weihao Yu
Zihang Jiang
Yanfei Dong
Jiashi Feng
1
+ PDF Chat Learning to Prescribe Interventions for Tuberculosis Patients Using Digital Adherence Data 2019 Jackson A. Killian
Bryan Wilder
Amit Sharma
Vinod Choudhary
Bistra Dilkina
Milind Tambe
1
+ PDF Chat Model Cards for Model Reporting 2019 Margaret Mitchell
Simone Wu
Andrew Zaldivar
Parker Barnes
Lucy Vasserman
Ben Hutchinson
Elena Spitzer
Inioluwa Deborah Raji
Timnit Gebru
1
+ PDF Chat 'It's Reducing a Human Being to a Percentage' 2018 Reuben Binns
Max Van Kleek
Michael Veale
Ulrik Lyngs
Jun Zhao
Nigel Shadbolt
1
+ Proceedings of the 24th international conference on Machine learning 2007 John Langford
Joëlle Pineau
1