Takayuki Furuta

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Upper and lower bounds, and operator monotonicity of an extension of the Petz-Hasegawa function 2017 Takayuki Furuta
Masatoshi Ito
Takeaki Yamazaki
Masahiro Yanagida
+ PDF Chat Upper and lower bounds, and operator monotonicity of an extension of the Petz-Hasegawa function 2017 Takayuki Furuta
Masatoshi Ito
Takeaki Yamazaki
Masahiro Yanagida
+ PDF Chat Precise lower bound of f(A)-f(B) for A>B>0 and non-constant operator monotone function f on [0,∞) 2015 Takayuki Furuta
+ Comprehensive survey on an order preserving operator inequality 2013 Takayuki Furuta
+ PDF Chat Operator monotone functions, A >B > 0 and logA > logB 2013 Takayuki Furuta
+ Elementary Proof of Petz–Hasegawa Theorem 2012 Takayuki Furuta
+ OPERATOR FUNCTIONS ON CHAOTIC ORDER INVOLVING ORDER PRESERVING OPERATOR INEQUALITIES (Structural study of operators via spectra or numerical ranges) 2012 Takayuki Furuta
+ Extensions of inequalities for unitarily invariant norms via log majorization 2012 Takayuki Furuta
+ PDF Chat Operator functions on chaotic order involving order preserving operator inequalities 2012 Takayuki Furuta
+ ASYMMETRIC VARIATION OF CHOI INEQUALITY FOR POSITIVE LINEAR MAP (Noncommutative Structure in Operator Theory and its Application) 2011 Takayuki Furuta
+ Around Choi inequalities for positive linear maps 2010 Takayuki Furuta
+ Operator equations via an order preserving operator inequality (Prospects of non-commutative analysis in operator theory) 2010 Takayuki Furuta
+ PDF Chat An extension of order preserving operator inequality 2010 Takayuki Furuta
+ Positive semidefinite solutions of the operator equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mo>∑</mml:mo></mml:mrow><mml:mrow><mml:mi>j</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup><mml:msup><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi><mml:mo>-</mml:mo><mml:mi>j</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:
 2009 Takayuki Furuta
+ Log majorization via an order preserving operator inequality 2009 Takayuki Furuta
+ Further extension of an order preserving operator inequality and its application (Application of Geometry to Operator Theory) 2009 Takayuki Furuta
+ PDF Chat Operator function associated with an order preserving operator inequality 2009 Takayuki Furuta
+ BRIEF SURVEY OF RECENT APPLICATIONS OF AN ORDER PRESERVING OPERATOR INEQUALITY 2008 Takayuki Furuta
+ PDF Chat BRIEF SURVEY OF RECENT APPLICATIONS OF AN ORDER PRESERVING OPERATOR INEQUALITY 2008 Takayuki Furuta
+ $A \ge B \ge 0$ ensures $(A^{\frac{r}{2}}A^pA^{\frac{r}{2}})^{\frac{1}{q}} \ge (A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{1}{q}}$ for $p \ge 0,q \ge 1,r \ge 0$ with $(1+r)q \ge p+r$ and brief survey of its recent applications (Inequalities on Linear Operators and its Applications) 2008 Takayuki Furuta
+ PDF Chat Further extension of an order preserving operator inequality 2008 Takayuki Furuta
+ Applications of polar decompositions of idempotent and 2-nilpotent operators 2007 Takayuki Furuta
+ Monotonicity of order preserving operator functions 2007 Takayuki Furuta
+ Operator inequality implying generalized Bebiano–Lemos–ProvidĂȘncia one 2007 Takayuki Furuta
+ Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation 2007 Takayuki Furuta
+ REVERSE INEQUALITIES ASSOCIATED WITH TSALLIS RELATIVE OPERATOR ENTROPY VIA GENERALIZED KANTOROVICH CONSTANT(Recent Developments in Linear Operator Theory and its Applications) 2005 Takayuki Furuta
+ Reverse inequalities involving two relative operator entropies and two relative entropies (Advanced Study of Applied Functional Analysis and Information Sciences) 2005 Takayuki Furuta
+ Two reverse inequalities associated with Tsallis relative operator entropy via generalized Kantorovich constant and their applications 2005 Takayuki Furuta
+ Reverse inequalities involving two relative operator entropies and two relative entropies 2005 Takayuki Furuta
+ Logarithmic trace inequalities (Role of Operator Inequalities in Operator Theory) 2005 Takayuki Furuta
+ PDF Chat Short proof that the arithmetic mean is greater than the harmonic mean and its reverse inequality 2005 Takayuki Furuta
+ Mond-Pecaric Method in Operator Inequalities 2005 Takayuki Furuta
Jadranka Mičić
‎Josip Pečarić
YĆ«ki Seo
+ A counterexample to the question proposed by Yanagi–Furuichi–Kuriyama on matrix inequalities and related counterexamples 2004 Takayuki Furuta
+ Convergence of logarithmic trace inequalities via generalized Lie–Trotter formulae 2004 Takayuki Furuta
+ Generalization of operator type Shannon inequality and its reverse one (Advanced Topics of Information Science and Functional Analysis) 2004 Takayuki Furuta
+ Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators via characterizations of operator concave functions (Recent Topics on Operator inequalities) 2004 Takayuki Furuta
+ Positive Operator Majorization and p -hyponormality 2004 Takayuki Furuta
Jung Il Bong
Lambert Alan
+ Parametric extensions of Shannon inequality and its reverse one in Hilbert space operators 2004 Takayuki Furuta
+ Order preserving inequalities and related operator functions 2004 Takayuki Furuta
Mariko Giga
+ Operator inequalities associated with AlogA via Specht ratio 2003 Takayuki Furuta
+ Specht ratio &S(1)& can be expressed by generalized Kantorovich constant &K(p)&: &S(1)& = &e^{K^{\prime}(1)}& and its application to operator inequalities associated with A log A (Structure of operators and related current topics) 2003 Takayuki Furuta
+ A complementary result of Kantorovich type order preserving inequalities by Mićić–Pečarić–Seo 2003 Takayuki Furuta
Mariko Giga
+ PDF Chat Simple proof of jointly concavity of the relative operator entropy S(A|B) = A^1/2 log (A^-1/2 BA^-1/2) A^1/2 2003 Takayuki Furuta
Mariko Giga
Masahiro Yanagida
+ PDF Chat Specht ratio S(1) can be expressed by Kantorovich constant K(p) : S(1)= exp[K'(1)] and its application 2003 Takayuki Furuta
+ PDF Chat An operator inequality associated with the operator concavity of operator entropy A log A^-1 2003 Takayuki Furuta
‎Josip Pečarić
+ Some topics on order preserving operator inequalities (Current topics on operator theory and operator inequalities) 2002 Takayuki Furuta
+ PDF Chat A proof of an order preserving inequality 2002 Takayuki Furuta
+ An operator monotone function tlogt−t+1log2t and strictly chaotic order 2002 Takayuki Furuta
+ PDF Chat An extension of Uchiyama's result associated with an order preserving operator inequality 2002 Takayuki Furuta
Eizaburo Kamei
+ Invitation to Linear Operators 2001 Takayuki Furuta
+ A 【greater than or equal】 B 【greater than or equal】 0 ENSURES (A^ A^p A^ )^ 【greater than or equal】 (A^ B^p A )^ FOR p 【greater than or equal】 0, q 【greater than or equal】 1, r 【greater than or equal】 0 WITH (1+r)q 【greater than or equal】 p+r AND ITS APPLICATIONS 2001 Takayuki Furuta
+ The Hölder-McCarthy and the Young Inequalities Are Equivalent for Hilbert Space Operators 2001 Takayuki Furuta
+ PDF Chat Spectral order A ≻ B if and only if A^(2p-r) ≄ ( A^(-r / 2) B^p A^(-r / 2) )^( (2p-r) / (p-r) ) for all p &gt; r ≄ 0 and its application 2001 Takayuki Furuta
+ The Holder-McCarthy and the Young Inequalities Are Equivalent for Hilbert Space Operators 2001 Takayuki Furuta
+ Logarithmic order and dual logarithmic order 2001 Takayuki Furuta
+ LOGARITHMIC ORDER AND DUAL LOGARITHMIC ORDER (Operator Inequalities and Related Area) 2000 Takayuki Furuta
+ Order Preserving Operator Function via Furuta Inequality “A ≄ B ≄ 0 Ensures for $$ \left( {A^{\frac{r} {2}} A^P A^{\frac{r} {2}} } \right)^{\frac{{1 + r}} {{p + r}}} \geqslant \left( {A^{\frac{r} {2}} B^p A^{\frac{r} {2}} } \right)^{\frac{{1 + r}} {{p + r}}} $$ for p≄1 and r≄0” 2000 Takayuki Furuta
Takeaki Yamazaki
Masahiro Yanagida
+ On powers of -hyponormal and log-hyponormal operators 2000 Takayuki Furuta
Masahiro Yanagida
+ PDF Chat Results under log A ≄ log B can be derived from ones under A ≄ B ≄ 0 by Uchiyama's method - associated with Furuta and Kantorovich type operator inequalities 2000 Takayuki Furuta
+ PDF Chat Simple proof of the concavity of operator entropy f(A)= -A log A 2000 Takayuki Furuta
+ APPLICATIONS OF GRAMIAN TRANSFORMATION FORMULA 2000 Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
+ On powers of <inline-formula><graphic file="1029-242X-2000-892676-i1.gif"/></inline-formula>-hyponormal and log-hyponormal operators 2000 Takayuki Furuta
Yanagida Masahiro
+ A subclass of paranormal including class of log-hyponormal and several related classes (Operator Inequalities and related topics) 1999 Takeaki Yamazaki
Masatoshi Ito
Takayuki Furuta
+ A ≄ B ≄ 0 Ensures $${\left( {{B^{\frac{r}{2}}}{A^p}{B^{\frac{r}{2}}}} \right)^{\frac{1}{q}}} \geqslant {\left( {{B^{\frac{r}{2}}}{A^p}{B^{\frac{r}{2}}}} \right)^{\frac{1}{q}}}$$ for R ≄ 0, P ≄ 0, G ≄ 1 with (1 + R)Q ≄P + R and its Recent Appications 1999 Takayuki Furuta
+ PDF Chat Generalized Furuta inequality in Banach ✻-algebras and its applications 1999 Takayuki Furuta
+ On a conjecture related to Furuta-type inequalities with negative powers 1998 Takayuki Furuta
Takeaki Yamazaki
Masahiro Yanagida
+ ORDER PRESERVING OPERATOR INEQUALITIES VIA FURUTA INEQUALITY 1998 Takayuki Furuta
Takeaki Yamazaki
Masahiro Yanagida
+ An Operator Version Of The Wilf-Diaz-Metcalf Inequality 1998 Jun Ichi Fujii
Takayuki Furuta
+ Order preserving operator function via the inequality (Applied Functional Analysis) 1998 Masahiro Yanagida
Takeaki Yamazaki
Takayuki Furuta
+ Generalized Means and Convexity of Inversion For Positive Operators 1998 Takayuki Furuta
Masahiro Yanagida
+ Generalized Means and Convexity of Inversion for Positive Operators 1998 Takayuki Furuta
Masahiro Yanagida
+ PDF Chat A decreasing operator function associated with the Furuta inequality 1998 Takayuki Furuta
Derming Wang
+ Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities 1998 Takayuki Furuta
+ PDF Chat Simplified proof of an order preserving operator inequality 1998 Takayuki Furuta
+ PDF Chat Operator functions implying generalized Furuta inequality 1998 Takayuki Furuta
Takeaki Yamazaki
Masahiro Yanagida
+ Operator inequalities associated with H&#246;lder&#8211;McCarthy and Kantorovich inequalities 1998 Takayuki Furuta
+ OPERATOR INEQUALITIES AND COVARIANCE IN NONCOMMUTATIVE PROBABILITY 1997 Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
Sin-Ei Takahashi
+ Further extensions of aluthge transformation onp-hyponormal operators 1997 Takayuki Furuta
Masahiro Yanagida
+ Equivalence relations among reid, Lïżœwner-Heinz and Heinz-Kato inequalities, and extensions of these inequalities 1997 Takayuki Furuta
+ Applications of order preserving operator inequalities to a generalized relative operator entropy 1997 Takayuki Furuta
+ PDF Chat Extensions of Hölder–McCarthy and Kantorovich inequalities and their applications 1997 Takayuki Furuta
+ Characterizations of chaotic order via generalized Furuta inequality 1997 Takayuki Furuta
+ PDF Chat Norm inequalities in the Corach-Porta-Recht theory and operator means 1996 Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
+ Generalizations of Kosaki trace inequalities and related trace inequalities on chaotic order 1996 Takayuki Furuta
+ PDF Chat Generalized Aluthge transformation on 𝑝-hyponormal operators 1996 Takayuki Furuta
+ Extension of the furuta inequality and Ando-Hiai log-majorization 1995 Takayuki Furuta
+ A note on the arithmetic-geometric mean inequality for every unitarily invariant matrix norm 1994 Takayuki Furuta
+ $A \ge B \ge 0$ ensures $(B^r A^p B^r)^{1/q} \ge (B^r B^p B^r)^{1/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with (1 + 2r)q $\ge$ p + 2r and its applications(Linear Operators and Inequalities) 1994 Takayuki Furuta
+ PDF Chat An Extension of the Heinz-Kato Theorem 1994 Takayuki Furuta
+ PDF Chat An extension of the Heinz-Kato theorem 1994 Takayuki Furuta
+ PDF Chat Determinant type generalizations of Heinz-Kato theorem via Furuta inequality 1994 Takayuki Furuta
+ Determinant Type Generalizations of the Heinz-Kato Theorem Via the Furuta Inequality 1994 Takayuki Furuta
+ PDF Chat Complements to the Furuta inequality 1994 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
+ An Inequality for some Nonnormal Operators--Extension to Normal Approximate Eigenvalues 1993 Masatoshi Fujii
Takayuki Furuta
Yuki Seo
+ PDF Chat Norm Inequalities Equivalent to Heinz Inequality 1993 Jun Ichi Fujii
Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat Norm inequalities equivalent to Heinz inequality 1993 Junichi Fujii
Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
+ Furuta's inequality and its application to Ando's theorem 1993 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
+ PDF Chat An inequality for some nonnormal operators―extension to normal approximate eigenvalues 1993 Masatoshi Fujii
Takayuki Furuta
YĆ«ki Seo
+ Generalization of Heinz-Kato Theorem Via Furuta Inequality 1993 Takayuki Furuta
+ Applications of the Furuta Inequality to Operator Inequalities and Norm Inequalities Preserving Some Orders 1993 Takayuki Furuta
+ Counterexample to a question on the operator equation T(H1nT)n=K 1992 Edward Bach
Takayuki Furuta
+ Applications of Order Preserving Operator Inequalities 1992 Takayuki Furuta
+ Norm inequalities related to Mcintosh type inequality 1992 Jun Ichi Fujii
Masatoshi Fujii
Takayuki Furuta
Ritsuo Nakamoto
+ An Application of Furuta’s Inequality to Ando’s Theorem 1992 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
+ Operator functions associated with Furuta's inequality 1991 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
+ PDF Chat Two Operator Functions with Monotone Property 1991 Takayuki Furuta
+ When Does The Equality Of A Generalized Selberg Inequality Hold 1991 Takayuki Furuta
+ PDF Chat Two operator functions with monotone property 1991 Takayuki Furuta
+ A proof via operator means of an order preserving inequality 1989 Takayuki Furuta
+ PDF Chat An elementary proof of an order preserving inequality 1989 Takayuki Furuta
+ PDF Chat NORM INEQUALITIES EQUIVALENT TO LÖWNER-HEINZ THEOREM 1989 Takayuki Furuta
+ A ≧B ≧0 Ensures (BA 2 B) 1/2 ≧B 2 -Solution to a Conjecture on Operator Inequalities 1988 Takayuki Furuta
+ <i>A</i> ≧ <i>B</i> ≧ 0 Ensures (<i>BA</i><sup>2</sup>)<i>B</i><sup>1/2</sup> ≧ B<sup>2</sup> — Solution to a Conjecture on Operator Inequalities 1988 Takayuki Furuta
+ PDF Chat An Inequality for Some Nonnormal Operators 1988 Takayuki Furuta
+ The operator equation T(H1nT)n=K 1988 Takayuki Furuta
+ PDF Chat Two Mixed Hadamard Type Generalizations of Heinz Inequality 1988 Takayuki Furuta
+ PDF Chat Two mixed Hadamard type generalizations of Heinz inequality 1988 Takayuki Furuta
+ PDF Chat An inequality for some nonnormal operators 1988 Takayuki Furuta
+ $A \geq B \geq 0$ Assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1 + 2r)q \geq p + 2r$ 1987 Takayuki Furuta
+ A Counterexample to a Conjectured Hermitian Matrix Inequality 1987 Takayuki Furuta
+ A Counterexample to a Conjectured Hermitian Matrix Inequality 1987 Takayuki Furuta
+ PDF Chat đŽâ‰„đ”â‰„0 assures (đ”^{𝑟}𝐮^{𝑝}đ”^{𝑟})^{1/𝑞}â‰„đ”^{(𝑝+2𝑟)/𝑞} for đ‘Ÿâ‰„0, đ‘â‰„0, đ‘žâ‰„1 with (1+2𝑟)đ‘žâ‰„đ‘+2𝑟 1987 Takayuki Furuta
+ A ≄ B ≄ 0 assures (BrApBr)1/q≄ B(P+2r)/qFOR r ≄ 0, p≄0, q≄1 with (1 + 2r)q ≄ p + 2r 1987 Takayuki Furuta
+ Shorter Notes: A Simplified Proof of Heinz Inequality and Scrutiny of its Equality 1986 Takayuki Furuta
+ PDF Chat Similarity between Kleinecke-Shirokov theorem and Fuglede-Putnam theorem 1986 Takayuki Furuta
+ PDF Chat A simplified proof of Heinz inequality and scrutiny of its equality 1986 Takayuki Furuta
+ PDF Chat Mixed Hadamard’s theorems 1986 Takayuki Furuta
+ PDF Chat Extensions of the Fuglede-Putnam-type theorems to subnormal operators 1985 Takayuki Furuta
+ A COUNTER EXAMPLE TO A RESULT ON APPROXIMATE POINT SPECTRA OF POLAR FACTORS OF HYPONORMAL OPERATORS 1984 Takayuki Furuta
+ PDF Chat A Hilbert-Schmidt norm inequality associated with the Fuglede-Putnam theorem 1982 Takayuki Furuta
+ PDF Chat A Hilbert-Schmidt norm inequality associated with the Fuglede-Putnam theorem 1982 Takayuki Furuta
+ PDF Chat Generalized Fuglede-Putnam theorem and Hilbert-Schmidt norm inequality 1982 Takayuki Furuta
+ PDF Chat Necessary and sufficient conditions for spectral sets 1981 Takayuki Furuta
Muneo Chƍ
+ PDF Chat Essentially Convexoid Operators 1981 Takayuki Furuta
+ PDF Chat An Extension of the Fuglede-Putnam Theorem to Subnormal Operators Using a Hilbert-Schmidt Norm Inequality 1981 Takayuki Furuta
+ PDF Chat An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality 1981 Takayuki Furuta
+ Normality can be Relaxed in the Asymptotic Fuglede-Putnum Theorem 1980 Takayuki Furuta
+ PDF Chat Normality can be relaxed in the asymptotic Fuglede-Putnam theorem 1980 Takayuki Furuta
+ PDF Chat On Relaxation of Normality in the Fuglede-Putnam Theorem 1979 Takayuki Furuta
+ PDF Chat On relaxation of normality in the Fuglede-Putnam theorem 1979 Takayuki Furuta
+ PDF Chat Relations Between Generalized Growth Conditions and Several Classes of Convexoid Operators 1977 Takayuki Furuta
+ PDF Chat On partial isometries 1977 Takayuki Furuta
+ An application of unitary ϱ-dilations of Sz.-Nagy and FoiaƟ 1972 Takayuki Furuta
+ PDF Chat Certain Numerical Radius Contraction Operators 1971 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat On the numerical range of an operator 1971 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat Certain convexoid operators 1971 Takayuki Furuta
+ PDF Chat Certain numerical radius contraction operators 1971 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat On some theorems of Berberian and Sheth 1970 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat A note on two inequalities correlated to unitary $\rho $-dilatations 1969 Takayuki Furuta
+ PDF Chat Some theorems on certain contraction operators 1969 Takayuki Furuta
Ritsuo Nakamoto
+ Some Theorems on Certain Contraction Operators 1969 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat A metric characterization of the Cartesean decomposition in a $*$-algebra 1968 Takayuki Furuta
Ritsuo Nakamoto
+ PDF Chat Relations between unitary $\rho$-dilatations and two norms 1968 Takayuki Furuta
+ PDF Chat Relations between unitary $\rho$-dilatations and two norms, II 1968 Takayuki Furuta
+ PDF Chat A characterization of spectraloid operators and its generalization 1967 Takayuki Furuta
ZirĂŽ Takeda
+ PDF Chat A generalization of Durszt's theorem on unitary $\rho $-dilatations 1967 Takayuki Furuta
+ PDF Chat On the class of paranormal operators 1967 Takayuki Furuta
+ A Generalization of Durszt's Theorem on Unitary ρ-Dilatations 1967 Takayuki Furuta
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat An elementary proof of an order preserving inequality 1989 Takayuki Furuta
31
+ PDF Chat Best possibility of the Furuta inequality 1996 KĂŽtarĂŽ Tanahashi
28
+ BeitrÀge zur Störungstheorie der Spektralzerleung 1951 Erhard Heinz
27
+ Extension of the furuta inequality and Ando-Hiai log-majorization 1995 Takayuki Furuta
26
+ Log majorization and complementary Golden-Thompson type inequalities 1994 Tsuyoshi AndĂŽ
Fumio Hiai
22
+ PDF Chat Some operator monotone functions 1972 Gert K. Pedersen
22
+ PDF Chat Mean theoretic approach to the grand Furuta inequality 1996 Masatoshi Fujii
Eizaburo Kamei
18
+ Means of positive linear operators 1980 Fumio Kubo
Tsuyoshi AndĂŽ
17
+ A proof via operator means of an order preserving inequality 1989 Takayuki Furuta
17
+ PDF Chat The best possibility of the grand Furuta inequality 1999 KĂŽtarĂŽ Tanahashi
15
+ Invitation to Linear Operators 2001 Takayuki Furuta
15
+ Applications of Order Preserving Operator Inequalities 1992 Takayuki Furuta
15
+ On some operator inequalities 1987 T. AndĂŽ
15
+ PDF Chat Two operator functions with monotone property 1991 Takayuki Furuta
13
+ PDF Chat Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality 1999 Takeaki Yamazaki
13
+ A short proof of the best possibility for the grand Furuta inequality 1999 Masatoshi Fujii
Akemi Matsumoto
Ritsuo Nakamoto
13
+ PDF Chat Simplified proof of an order preserving operator inequality 1998 Takayuki Furuta
12
+ PDF Chat A note on the entropy for operator algebras 1961 Masahiro Nakamura
Hisaharu Umegaki
12
+ PDF Chat A Hilbert Space Problem Book 1982 Paul R. Halmos
12
+ Furuta's inequality and its application to Ando's theorem 1993 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
10
+ A HILBERT SPACE PROBLEM BOOK 1968 Frank Smithies
10
+ Positive Definite Matrices 2009 Rajendra Bhatia
9
+ $A \geq B \geq 0$ Assures $(B^r A^p B^r)^{1/q} \geq B^{(p+2r)/q$ for $r \geq 0$, $p \geq 0$, $q \geq 1$ with $(1 + 2r)q \geq p + 2r$ 1987 Takayuki Furuta
9
+ Operator functions associated with Furuta's inequality 1991 Masatoshi Fujii
Takayuki Furuta
Eizaburo Kamei
9
+ On Normal Operators in Hilbert Space 1951 C. R. Putnam
8
+ Notes on some inequalities for linear operators 1952 Tosio Kato
8
+ Some results on matrix monotone functions 1989 Man Kam Kwong
7
+ PDF Chat Note on a theorem of Fuglede and Putnam 1959 S. K. Berberian
7
+ PDF Chat Some exponential operator inequalities 1999 Mitsuru Uchiyama
7
+ PDF Chat On the class of paranormal operators 1967 Takayuki Furuta
6
+ PDF Chat Note on a Theorem of Fuglede and Putnam 1959 S. K. Berberian
6
+ Shorter Notes: Some Operator Monotone Functions 1972 Gert K. Pedersen
6
+ A matrix version of the Ky Fan generalization of the kantorovich inequality 1994 B. Mond
Jozep Pecaric
6
+ A characterization of chaotic order and a problem 1998 Masatoshi Fujii
Jian Fei Jiang
Eizaburo Kamei
KĂŽtarĂŽ Tanahashi
6
+ PDF Chat Results under log A ≄ log B can be derived from ones under A ≄ B ≄ 0 by Uchiyama's method - associated with Furuta and Kantorovich type operator inequalities 2000 Takayuki Furuta
6
+ Onp-hyponormal operators for 0&lt;p&lt;1 1990 Ariyadasa Aluthge
6
+ PDF Chat Operator functions implying generalized Furuta inequality 1998 Takayuki Furuta
Takeaki Yamazaki
Masahiro Yanagida
6
+ PDF Chat On relaxation of normality in the Fuglede-Putnam theorem 1979 Takayuki Furuta
5
+ PDF Chat A note on $p$-hyponormal operators 1997 Tadasi Huruya
5
+ Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities 1998 Takayuki Furuta
5
+ The Golden-Thompson trace inequality is complemented 1993 Fumio Hiai
Dėnes Petz
5
+ PDF Chat Extensions of a theorem of Fuglede and Putnam 1978 S. K. Berberian
5
+ PDF Chat Extensions of a Theorem of Fuglede and Putnam 1978 S. K. Berberian
5
+ An operator inequality 1980 Frank Hansen
5
+ On a Theorem of Fuglede and Putnam<sup>†</sup> 1958 Marvin Rosenblum
5
+ PDF Chat đŽâ‰„đ”â‰„0 assures (đ”^{𝑟}𝐮^{𝑝}đ”^{𝑟})^{1/𝑞}â‰„đ”^{(𝑝+2𝑟)/𝑞} for đ‘Ÿâ‰„0, đ‘â‰„0, đ‘žâ‰„1 with (1+2𝑟)đ‘žâ‰„đ‘+2𝑟 1987 Takayuki Furuta
5
+ Hermitian Matrix Inequalities and a Conjecture 1985 N. N. Chan
Man Kam Kwong
5
+ Shifts on Hilbert spaces. 1961 Paul R. Halmos
5
+ PDF Chat Characterization of chaotic order and its application to Furuta inequality 1997 Masatoshi Fujii
Jian Fei Jiang
Eizaburo Kamei
4
+ PDF Chat A decreasing operator function associated with the Furuta inequality 1998 Takayuki Furuta
Derming Wang
4