Da Yu

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Fingerprinting codes and the price of approximate differential privacy 2014 Mark Bun
Jonathan Ullman
Salil Vadhan
1
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
1
+ Mixed Precision Training 2017 Paulius Micikevicius
Sharan Narang
Jonah Alben
Gregory Diamos
Erich Elsen
David García
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
1
+ Learning Differentially Private Recurrent Language Models 2017 H. Brendan McMahan
Daniel Ramage
Kunal Talwar
Li Zhang
1
+ Scalable Private Learning with PATE 2018 Nicolas Papernot
Shuang Song
Ilya Mironov
Ananth Raghunathan
Kunal Talwar
Úlfar Erlingsson
1
+ PDF Chat Private Learning and Sanitization: Pure vs. Approximate Differential Privacy 2013 Amos Beimel
Kobbi Nissim
Uri Stemmer
1
+ Gaussian Error Linear Units (GELUs) 2016 Dan Hendrycks
Kevin Gimpel
1
+ Decoupled Weight Decay Regularization 2017 Ilya Loshchilov
Frank Hutter
1
+ GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding 2018 Alex Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel Bowman
1
+ The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks 2018 Nicholas Carlini
Chang Liu
Úlfar Erlingsson
Jernej Kos
Dawn Song
1
+ Measuring the Intrinsic Dimension of Objective Landscapes 2018 Chunyuan Li
Heerad Farkhoor
Rosanne Liu
Jason Yosinski
1
+ Scaling Neural Machine Translation 2018 Myle Ott
Sergey Edunov
David Grangier
Michael Auli
1
+ A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference 2018 Adina Williams
Nikita Nangia
Samuel Bowman
1
+ The E2E Dataset: New Challenges For End-to-End Generation 2017 Jekaterina Novikova
Ondřej Dušek
Verena Rieser
1
+ Parameter-Efficient Transfer Learning for NLP 2019 Neil Houlsby
Andrei Giurgiu
Stanisław Jastrzȩbski
Bruna Morrone
Quentin de Laroussilhe
Andréa Gesmundo
Mona Attariyan
Sylvain Gelly
1
+ RoBERTa: A Robustly Optimized BERT Pretraining Approach 2019 Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Luke Zettlemoyer
Veselin Stoyanov
1
+ Privately Answering Classification Queries in the Agnostic PAC Model 2019 Anupama Nandi
Raef Bassily
1
+ Limits of Private Learning with Access to Public Data 2019 Noga Alon
Raef Bassily
Shay Moran
1
+ Computing Tight Differential Privacy Guarantees Using FFT 2019 Antti Koskela
Joonas Jälkö
Antti Honkela
1
+ Plug and Play Language Models: A Simple Approach to Controlled Text Generation 2019 Sumanth Dathathri
Andrea Madotto
Janice Lan
Jane Hung
Eric Frank
Piero Molino
Jason Yosinski
Rosanne Liu
1
+ Does learning require memorization? a short tale about a long tail 2020 Vitaly Feldman
1
+ Bypassing the Ambient Dimension: Private SGD with Gradient Subspace Identification 2020 Yingxue Zhou
Zhiwei Steven Wu
Arindam Banerjee
1
+ Learning from Mixtures of Private and Public Populations 2020 Raef Bassily
Shay Moran
Anupama Nandi
1
+ Differentially Private Learning Needs Better Features (or Much More Data) 2020 Florian Tramèr
Dan Boneh
1
+ TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning 2020 Han Cai
Chuang Gan
Ligeng Zhu
Song Han
1
+ PDF Chat Numerical Composition of Differential Privacy 2024 Sivakanth Gopi
Yin Tat Lee
Lukas Wutschitz
1
+ LoRA: Low-Rank Adaptation of Large Language Models 2021 J. Edward Hu
Yelong Shen
Phillip Wallis
Zeyuan Allen-Zhu
Yuanzhi Li
Shean Wang
Weizhu Chen
1
+ PDF Chat Large Scale Private Learning via Low-rank Reparametrization 2021 Dahua Yu
Huishuai Zhang
Wei Chen
Jian Yin
Tie‐Yan Liu
1
+ Prefix-Tuning: Optimizing Continuous Prompts for Generation 2021 Xiang Lisa Li
Percy Liang
1
+ Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning 2021 Armen Aghajanyan
Sonal Gupta
Luke Zettlemoyer
1
+ Large-Scale Differentially Private BERT 2022 Rohan Anil
Badih Ghazi
Vineet Gupta
Ravi Kumar
Pasin Manurangsi
1
+ Large Language Models Can Be Strong Differentially Private Learners 2021 Xuechen Li
Florian Tramèr
Percy Liang
Tatsunori Hashimoto
1
+ PDF Chat The Power of Scale for Parameter-Efficient Prompt Tuning 2021 Brian Lester
Rami Al‐Rfou
Noah Constant
1
+ PDF Chat AdapterDrop: On the Efficiency of Adapters in Transformers 2021 Andreas Rücklé
Gregor Geigle
Max Glockner
Tilman Beck
Jonas Pfeiffer
Nils Reimers
Iryna Gurevych
1
+ Unlocking High-Accuracy Differentially Private Image Classification through Scale 2022 Soham De
Leonard Berrada
Jamie Hayes
Samuel Smith
Borja Balle
1
+ Public Data-Assisted Mirror Descent for Private Model Training 2021 Ehsan Amid
Arun Ganesh
Rajiv Mathews
Swaroop Ramaswamy Pillai
Shuang Song
Thomas Steinke
Vinith M. Suriyakumar
Om Thakkar
Abhradeep Thakurta
1
+ Submix: Practical Private Prediction for Large-Scale Language Models 2022 Antonio Ginart
Laurens van der Maaten
James Zou
Chuan Guo
1
+ Large Scale Transfer Learning for Differentially Private Image Classification 2022 Harsh Mehta
Abhradeep Thakurta
Alexey Kurakin
Ashok Cutkosky
1
+ Differentially Private Model Compression 2022 Fatemehsadat Mireshghallah
Artūrs Bačkurs
Huseyin A Inan
Lukas Wutschitz
Janardhan Kulkarni
1
+ Pre-trained Perceptual Features Improve Differentially Private Image Generation 2022 Fredrik Harder
Milad Jalali Asadabadi
Danica J. Sutherland
Mijung Park
1
+ When Does Differentially Private Learning Not Suffer in High Dimensions? 2022 Xuechen Li
Daogao Liu
Tatsunori Hashimoto
Huseyin A. Inan
Janardhan Kulkarni
Yin Tat Lee
Abhradeep Thakurta
1
+ Benchmarking Differential Privacy and Federated Learning for BERT Models 2021 Priyam Basu
Tiasa Singha Roy
Rakshit Naidu
Zümrüt Müftüoğlu
Sahib Singh
Fatemehsadat Mireshghallah
1
+ Compacter: Efficient Low-Rank Hypercomplex Adapter Layers 2021 Rabeeh Karimi Mahabadi
James Henderson
Sebastian Ruder
1
+ Extracting Training Data from Large Language Models 2020 Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
Katherine Lee
Adam Roberts
Tom Brown
Dawn Song
Úlfar Erlingsson
1
+ Training Production Language Models without Memorizing User Data 2020 Swaroop Ramaswamy Pillai
Om Thakkar
Rajiv Mathews
Galen Andrew
H. Brendan McMahan
Françoise Beaufays
1
+ Language Models are Few-Shot Learners 2020 T. B. Brown
Benjamin F. Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
1
+ Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT 2020 Antti Koskela
Joonas Jälkö
Lukas Prediger
Antti Honkela
1
+ Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data 2016 Nicolas Papernot
Martı́n Abadi
Úlfar Erlingsson
Ian Goodfellow
Kunal Talwar
1
+ Differentially Private Optimization on Large Model at Small Cost 2022 Zhiqi Bu
Yuxiang Wang
Sheng Zha
George Karypis
1
+ Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization 2020 Pranav Subramani
Nicholas Vadivelu
Gautam Kamath
1