Shao-Lun Huang

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Connection between Correlation and Contingency 1935 H. O. Hirschfeld
2
+ Estimating Optimal Transformations for Multiple Regression and Correlation 1985 Leo Breiman
Jerome H. Friedman
2
+ Estimating Optimal Transformations for Multiple Regression and Correlation 1985 Leo Breiman
Jerome H. Friedman
2
+ PDF Chat Linear information coupling problems 2012 Shao–Lun Huang
Lizhong Zheng
2
+ The information bottleneck method 2000 Naftali Tishby
Fernando C. N. Pereira
William Bialek
1
+ Doubly Robust Policy Evaluation and Learning 2011 Miroslav DudĂ­k
John Langford
Lihong Li
1
+ PDF Chat Mutual Information and Maximal Correlation as Measures of Dependence 1962 C. B. Bell
1
+ PDF Chat Spreading of Sets in Product Spaces and Hypercontraction of the Markov Operator 1976 Rudolf Ahlswede
PĂ©ter GĂĄcs
1
+ Diffusion for Global Optimization in $\mathbb{R}^n $ 1987 Tzuu-Shuh Chiang
Chii-Ruey Hwang
Shuenn Jyi Sheu
1
+ Alan Turing and the Central Limit Theorem, S. L. Zabell 2009 S. L. Zabell
1
+ What Is Meant by “Missing at Random”? 2013 Shaun R. Seaman
John C. Galati
Dan Jackson
John B. Carlin
1
+ The Randomized Dependence Coefficient 2013 David LĂłpez-Paz
Philipp Hennig
Bernhard Schölkopf
1
+ PDF Chat Bootstrap Methods: Another Look at the Jackknife 1979 B. Efron
1
+ PDF Chat Residuals and Influence in Regression 1984 Robert F. Ling
R. Dennis Cook
Sanford Weisberg
1
+ PDF Chat The central role of the propensity score in observational studies for causal effects 1983 Paul R. Rosenbaum
Donald B. Rubin
1
+ Discrete rényi classifiers 2015 Meisam Razaviyayn
Farzan Farnia
David Tse
1
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
1
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
1
+ On Sequences of Pairs of Dependent Random Variables 1975 H. S. Witsenhausen
1
+ Learning Representations for Counterfactual Inference 2016 Fredrik Johansson
Uri Shalit
David Sontag
1
+ Rawlsian Fairness for Machine Learning. 2016 Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
1
+ PERTURBATION THEORY FOR LINEAR OPERATORS 1968 D. E. Edmunds
1
+ Opening the Black Box of Deep Neural Networks via Information 2017 Ravid Shwartz-Ziv
Naftali Tishby
1
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
1
+ PDF Chat Information Dropout: Learning Optimal Representations Through Noisy Computation 2018 Alessandro Achille
Stefano Soatto
1
+ Counterfactual Learning from Bandit Feedback under Deterministic Logging: A Case Study in Statistical Machine Translation 2017 Carolin Lawrence
Artem Sokolov
Stefan Riezler
1
+ An information-theoretic approach to universal feature selection in high-dimensional inference 2017 Shao-Lun Huang
Anuran Makur
Lizhong Zheng
Gregory W. Wornell
1
+ Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness 2017 Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
1
+ Delayed Impact of Fair Machine Learning 2018 Lydia T. Liu
Sarah Dean
Esther Rolf
Max Simchowitz
Moritz Hardt
1
+ Understanding disentangling in $\beta$-VAE 2018 Christopher Burgess
Irina Higgins
Arka Pal
Löıc Matthey
Nick Watters
Guillaume Desjardins
Alexander Lerchner
1
+ An Information-Theoretic View for Deep Learning 2018 Jingwei Zhang
Tongliang Liu
Dacheng Tao
1
+ Understanding disentangling in $ÎČ$-VAE 2018 Christopher Burgess
Irina Higgins
Arka Pal
Löıc Matthey
Nick Watters
Guillaume Desjardins
Alexander Lerchner
1
+ Learning Models with Uniform Performance via Distributionally Robust Optimization 2018 John C. Duchi
Hongseok Namkoong
1
+ Fairness in Recommendation Ranking through Pairwise Comparisons 2019 Alex Beutel
Jilin Chen
Tulsee Doshi
Hai Qian
Li Wei
Yi Wu
Lukasz Heldt
Zhe Zhao
Lichan Hong
Ed H.
1
+ Policy Learning for Fairness in Ranking 2019 Ashudeep Singh
Thorsten Joachims
1
+ PDF Chat An Information Theoretic Interpretation to Deep Neural Networks 2022 Xiangxiang Xu
Shao–Lun Huang
Lizhong Zheng
Gregory W. Wornell
1
+ Average Individual Fairness: Algorithms, Generalization and Experiments 2019 Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
1
+ Learning Optimal Fair Policies 2018 Razieh Nabi
Daniel Malinsky
Ilya Shpitser
1
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
1
+ DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 2017 Huifeng Guo
Ruiming Tang
Yunming Ye
Zhenguo Li
Xiuqiang He
1
+ Recommendations as Treatments: Debiasing Learning and Evaluation 2016 Tobias Schnabel
Adith Swaminathan
Ashudeep Singh
Navin Chandak
Thorsten Joachims
1
+ Estimating individual treatment effect: generalization bounds and algorithms 2016 Uri Shalit
Fredrik Johansson
David Sontag
1
+ PDF Chat Generalization Error Bounds for Noisy, Iterative Algorithms 2018 Ankit Pensia
Varun Jog
Po‐Ling Loh
1
+ Doubly Robust Off-policy Value Evaluation for Reinforcement Learning 2015 Nan Jiang
Lihong Li
1
+ Estimating Information Flow in Deep Neural Networks 2018 Ziv Goldfeld
E. van den Berg
Kristjan Greenewald
Igor Melnyk
Nam Nguyen
Brian Kingsbury
Yury Polyanskiy
1
+ Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis 2017 Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
1
+ In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning 2014 Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
1
+ PDF Chat An Efficient Approach to Informative Feature Extraction from Multimodal Data 2019 Lichen Wang
Jiaxiang Wu
Shao‐Lun Huang
Lizhong Zheng
Xiangxiang Xu
Lin Zhang
Junzhou Huang
1
+ Information-theoretic analysis of generalization capability of learning algorithms 2017 Aolin Xu
Maxim Raginsky
1
+ Data-dependent PAC-Bayes priors via differential privacy 2018 Gintare Karolina Dziugaite
Daniel M. Roy
1