Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Michael Moore
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Exploiting the Shape of CAN Data for In-Vehicle Intrusion Detection
2018
Zachariah Tyree
Robert A. Bridges
Frank L. Combs
Michael Moore
+
Exploiting the Shape of CAN Data for In-Vehicle Intrusion Detection
2018
Zachariah Tyree
Robert A. Bridges
Frank L. Combs
Michael Moore
+
PDF
Chat
Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning
2018
Christopher J. Frederickson
Michael Moore
Glenn Dawson
Robi Polikar
+
Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning.
2018
Christopher J. Frederickson
Michael Moore
Glenn Dawson
Robi Polikar
Common Coauthors
Coauthor
Papers Together
Christopher J. Frederickson
2
Robert A. Bridges
2
Zachariah Tyree
2
Glenn Dawson
2
Robi Polikar
2
Frank L. Combs
2
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Early Methods for Detecting Adversarial Images
2017
Dan Hendrycks
Kevin Gimpel
2
+
PDF
Chat
Identifying ECUs Using Inimitable Characteristics of Signals in Controller Area Networks
2018
Wonsuk Choi
Hyo Jin Jo
Samuel Woo
Ji Young Chun
Jooyoung Park
Dong Hoon Lee
2
+
PDF
Chat
Towards Poisoning of Deep Learning Algorithms with Back-gradient Optimization
2017
Luis Muñoz-González
Battista Biggio
Ambra Demontis
Andrea Paudice
Vasin Wongrassamee
Emil Lupu
Fabio Roli
2
+
PDF
Chat
Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks
2016
Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
2
+
Towards Deep Learning Models Resistant to Adversarial Attacks.
2018
Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
2
+
Isolation Forest
2008
Fei Tony Liu
Kai Ming Ting
Zhi‐Hua Zhou
2
+
Is feature selection secure against training data poisoning?
2018
Xiao Huang
Battista Biggio
Gavin Brown
Giorgio Fumera
Claudia Eckert
Fabio Roli
2
+
Poisoning Attacks against Support Vector Machines
2012
Battista Biggio
Blaine Nelson
Pavel Laskov
2
+
Scikit-learn: Machine Learning in Python
2012
Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
2
+
An introduction to diffusion maps
2008
De la Porte J
Herbst Bm
Willy Hereman
Van der Walt Stéfan
2
+
Practical Black-Box Attacks against Machine Learning
2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
Somesh Jha
Z. Berkay Celik
Ananthram Swami
1
+
Adversarial Machine Learning at Scale
2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
1
+
PDF
Chat
Wild patterns: Ten years after the rise of adversarial machine learning
2018
Battista Biggio
Fabio Roli
1
+
Detecting Adversarial Samples from Artifacts
2017
Reuben Feinman
Ryan R. Curtin
Saurabh Shintre
Andrew B. Gardner
1
+
Towards Deep Learning Models Resistant to Adversarial Attacks
2017
Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
1
+
Adversarial and Clean Data Are Not Twins
2017
Zhitao Gong
Wenlu Wang
Wei‐Shinn Ku
1
+
Explaining and Harnessing Adversarial Examples
2014
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
1
+
Evasion Attacks against Machine Learning at Test Time
2013
Battista Biggio
Igino Corona
Davide Maiorca
Blaine Nelson
Nedim Šrndić
Pavel Laskov
Giorgio Giacinto
Fabio Roli
1
+
PDF
Chat
Is data clustering in adversarial settings secure?
2013
Battista Biggio
Ignazio Pillai
Samuel Rota Bulò
Davide Ariu
Marcello Pelillo
Fabio Roli
1
+
Poisoning Attacks against Support Vector Machines
2012
Battista Biggio
Blaine Nelson
Pavel Laskov
1
+
Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples.
2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
Somesh Jha
Z. Berkay Celik
Ananthram Swami
1
+
Unifying Adversarial Training Algorithms with Flexible Deep Data Gradient Regularization
2016
Alexander G. Ororbia
C. Lee Giles
Daniel Kifer
1
+
Detecting Adversarial Samples from Artifacts.
2017
Reuben Feinman
Ryan R. Curtin
Saurabh Shintre
Andrew B. Gardner
1
+
Adversarial and Clean Data Are Not Twins
2023
Zhitao Gong
Wenlu Wang
1
+
Early Methods for Detecting Adversarial Images
2016
Dan Hendrycks
Kevin Gimpel
1
+
Extending Defensive Distillation
2017
Nicolas Papernot
Patrick McDaniel
1
+
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
2018
Battista Biggio
Fabio Roli
1