Hao Wang

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Jacob de Nobel 1
Sophia Zhengzi Li 1
Thomas Bäck 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ MCMC for doubly-intractable distributions 2012 Iain Murray
Zoubin Ghahramani
David Mackay
1
+ CMA-ES with Two-Point Step-Size Adaptation 2008 Nikolaus Hansen
1
+ APPROACHES FOR BAYESIAN VARIABLE SELECTION 1997 Edward I. George
Robert E. McCulloch
1
+ A double Metropolis–Hastings sampler for spatial models with intractable normalizing constants 2009 Faming Liang
1
+ PDF Chat Monte Carlo Statistical Methods 2000 Hoon Kim
Christian P. Robert
George Casella
1
+ Partially Collapsed Gibbs Samplers 2008 David A. van Dyk
Taeyoung Park
1
+ Markov Chain Monte Carlo in Practice: A Roundtable Discussion 1998 Robert E. Kass
Bradley P. Carlin
Andrew Gelman
Radford M. Neal
1
+ PDF Chat A Metropolis-Hastings based method for sampling from the G-Wishart distribution in Gaussian graphical models 2011 Nicholas Mitsakakis
Hélène Massam
Michael Escobar
1
+ Simulation of hyper-inverse Wishart distributions in graphical models 2007 Carla M. Carvalho
Hélène Massam
Michael L. West
1
+ PDF Chat Experiments in Stochastic Computation for High-Dimensional Graphical Models 2005 Beatrix Jones
Carlos M. Carvalho
Adrian Dobra
Chris Hans
Chris Carter
Mike West
1
+ Feature-Inclusion Stochastic Search for Gaussian Graphical Models 2008 James G. Scott
Carlos Marinho Carvalho
1
+ Independence Structure of Natural Conjugate Densities to Exponential Families and the Gibbs' Sampler 2000 Mauro Piccioni
1
+ Copula Gaussian graphical models and their application to modeling functional disability data 2011 Adrian Dobra
Alex Lenkoski
1
+ PDF Chat Computational Aspects Related to Inference in Gaussian Graphical Models With the G-Wishart Prior 2010 Alex Lenkoski
Adrian Dobra
1
+ On the Relationship Between Markov chain Monte Carlo Methods for Model Uncertainty 2001 Simon Godsill
1
+ Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models 2002 Alberto Roverato
1
+ PDF Chat Sparse covariance estimation in heterogeneous samples 2011 Abel Rodrìguez
Alex Lenkoski
Adrian Dobra
1
+ A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models 2005 Aliye Atay-Kayis
Hélène Massam
1
+ PDF Chat Bayesian Inference for General Gaussian Graphical Models With Application to Multivariate Lattice Data 2011 Adrian Dobra
Alex Lenkoski
Abel Rodrìguez
1
+ PDF Chat Simulation of hyper-inverse Wishart distributions for non-decomposable graphs 2010 Hao Wang
Carlos M. Carvalho
1
+ Sparse seemingly unrelated regression modelling: Applications in finance and econometrics 2010 Hao Wang
1
+ Decomposable graphical Gaussian model determination 1999 Paolo Giudici
Peter J Green
1
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ PDF Chat Bayesian analysis of matrix normal graphical models 2009 H. Wang
Michael L. West
1
+ PDF Chat The CMA Evolution Strategy: A Tutorial 2005 Nikolaus Hansen
1
+ Distributed and parallel time series feature extraction for industrial big data applications 2016 Maximilian Christ
Andreas W. Kempa-Liehr
Michael Feindt
1
+ PDF Chat Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package Flacco 2019 Pascal Kerschke
Heike Trautmann
1
+ PDF Chat Flexible covariance estimation in graphical Gaussian models 2008 Bala Rajaratnam
Hélène Massam
Carlos M. Carvalho
1
+ PDF Chat Evolving the structure of Evolution Strategies 2016 Sander van Rijn
Hao Wang
Matthijs van Leeuwen
Thomas Bäck
1
+ PDF Chat Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm 2011 Fionn Murtagh
Pierre Legendre
1