Serena Wang

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Score Design for Multi-Criteria Incentivization 2024 Anmol Kabra
Mina Karzand
Tosca Lechner
Nathan Srebro
Serena Wang
+ Regularization Strategies for Quantile Regression 2021 Taman Narayan
Serena Wang
Kevin Robert Canini
Maya R. Gupta
+ Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence 2021 Ghassen Jerfel
Serena Wang
Clara Fannjiang
Katherine Heller
Yi-An Ma
Michael I. Jordan
+ PDF Chat Finding Equilibrium in Multi-Agent Games with Payoff Uncertainty 2020 Wenshuo Guo
Mihaela Curmei
Serena Wang
Benjamin Recht
Michael I. Jordan
+ PDF Chat Pairwise Fairness for Ranking and Regression 2020 Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Serena Wang
+ Finding Equilibrium in Multi-Agent Games with Payoff Uncertainty 2020 Wenshuo Guo
Mihaela Curmei
Serena Wang
Benjamin Recht
Michael I. Jordan
+ Pairwise Fairness for Ranking and Regression 2019 Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
Serena Wang
+ Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals 2019 Andrew Cotter
Heinrich Jiang
Maya R. Gupta
Serena Wang
Taman Narayan
Seungil You
Karthik Sridharan
+ Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals 2018 Andrew Cotter
Heinrich Jiang
Serena Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
+ Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints 2018 Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
Serena Wang
Blake Woodworth
Seungil You
+ Proxy Fairness 2018 Maya R. Gupta
Andrew Cotter
Mahdi Milani Fard
Serena Wang
+ Interpretable Set Functions 2018 Andrew Cotter
Maya R. Gupta
Heinrich Jiang
James Muller
Taman Narayan
Serena Wang
Tao Zhu
+ Quit When You Can: Efficient Evaluation of Ensembles with Ordering Optimization 2018 Serena Wang
Maya R. Gupta
Seungil You
+ Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints 2018 Andrew Cotter
Maya R. Gupta
Heinrich Jiang
Nathan Srebro
Karthik Sridharan
Serena Wang
Blake Woodworth
Seungil You
+ Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals 2018 Andrew Cotter
Heinrich Jiang
Serena Wang
Taman Narayan
Maya R. Gupta
Seungil You
Karthik Sridharan
+ Proxy Fairness 2018 Maya R. Gupta
Andrew Cotter
Mahdi Milani Fard
Serena Wang
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Two-Player Games for Efficient Non-Convex Constrained Optimization 2018 Andrew Cotter
Heinrich Jiang
Karthik Sridharan
4
+ Equality of Opportunity in Supervised Learning 2016 Moritz Hardt
Eric Price
Nathan Srebro
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ Robust Optimization for Non-Convex Objectives 2017 Robert F. Chen
Brendan Lucier
Yaron Singer
Vasilis Syrgkanis
2
+ Counterfactual Fairness 2017 Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
2
+ Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness 2017 Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
2
+ Monotonic calibrated interpolated look-up tables 2016 Maya R. Gupta
Andrew Cotter
Jan Pfeifer
Konstantin Voevodski
Kevin Robert Canini
Alexander Mangylov
Wojciech MoczydƂowski
Alexander Van Esbroeck
2
+ Fairness of Exposure in Rankings 2018 Ashudeep Singh
Thorsten Joachims
2
+ Satisfying Real-world Goals with Dataset Constraints 2016 Gabriel Goh
Andrew Cotter
Maya R. Gupta
Michael P. Friedlander
2
+ PDF Chat Reducing Disparate Exposure in Ranking: A Learning To Rank Approach 2018 Meike Zehlike
Carlos Castillo
2
+ PDF Chat Nuanced Metrics for Measuring Unintended Bias with Real Data for Text Classification 2019 Daniel Borkan
Lucas Dixon
Jeffrey Sorensen
Nithum Thain
Lucy Vasserman
2
+ PDF Chat Fairness through awareness 2012 Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
2
+ Bayesian Inference in Econometric Models Using Monte Carlo Integration 1989 John Geweke
1
+ Methods of Reducing Sample Size in Monte Carlo Computations 1953 Herman Kahn
Andrew W. Marshall
1
+ PDF Chat Simultaneous multiple non-crossing quantile regression estimation using kernel constraints 2011 Yanping Liu
Yichao Wu
1
+ Quantile Curves without Crossing 1997 Xuming He
1
+ Classifying with confidence from incomplete information 2013 Nathan Parrish
Hyrum S. Anderson
Maya R. Gupta
Dun Yu Hsiao
1
+ PDF Chat A Neyman–Pearson Approach to Statistical Learning 2005 Clayton Scott
Robert D. Nowak
1
+ PDF Chat Minimum variance importance sampling<i>via</i>Population Monte Carlo 2007 Randal Douc
Arnaud Guillin
Jean‐Michel Marin
Christian P. Robert
1
+ PDF Chat Noncrossing quantile regression curve estimation 2010 Howard D. Bondell
Brian J. Reich
Huixia Wang
1
+ Matching pursuits with time-frequency dictionaries 1993 Stéphane Mallat
Zhifeng Zhang
1
+ Sequential greedy approximation for certain convex optimization problems 2003 Tong Zhang
1
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
1
+ Nonparametric Quantile Estimation 2006 Ichiro Takeuchi
Quoc V. Le
Timothy D. Sears
Alexander J. Smola
1
+ Pareto Smoothed Importance Sampling 2015 Aki Vehtari
Andrew Gelman
Jonah Gabry
1
+ Nonparametric Estimation under Shape Constraints 2014 Piet Groeneboom
Geurt Jongbloed
1
+ PDF Chat Joint quantile regression in vector-valued RKHSs 2016 Maxime Sangnier
Olivier Fercoq
Florence d’Alché–Buc
1
+ Lattice Regression 2009 Eric Garcia
Maya R. Gupta
1
+ Spatial Point Processes 2011 Mark Huber
1
+ Boosting Variational Inference 2016 Fangjian Guo
Xiangyu Wang
Kai Fan
Tamara Broderick
David B. Dunson
1
+ Variational Boosting: Iteratively Refining Posterior Approximations 2016 Andrew C. Miller
Nicholas J. Foti
Ryan P. Adams
1
+ A Convex Framework for Fair Regression 2017 Richard A. Berk
Hoda Heidari
Shahin Jabbari
Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
1
+ PDF Chat FA*IR 2017 Meike Zehlike
Francesco Bonchi
Carlos Castillo
Sara Hajian
M. Megahed
Ricardo Baeza‐Yates
1
+ Yes, but Did It Work?: Evaluating Variational Inference 2018 Yuling Yao
Aki Vehtari
Daniel Simpson
Andrew Gelman
1
+ Empirical Risk Minimization under Fairness Constraints 2018 Michele Donini
Luca Oneto
Shai Ben-David
John Shawe‐Taylor
Massimiliano Pontil
1
+ The Fairness of Risk Scores Beyond Classification: Bipartite Ranking and the xAUC Metric 2019 Nathan Kallus
Angela Zhou
1
+ Policy Learning for Fairness in Ranking 2019 Ashudeep Singh
Thorsten Joachims
1
+ Fair Regression: Quantitative Definitions and Reduction-based Algorithms 2019 Alekh Agarwal
Miroslav Dudı́k
Zhiwei Steven Wu
1
+ Fairness Constraints: Mechanisms for Fair Classification 2015 Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez-Rodriguez
Krishna P. Gummadi
1
+ A Contrastive Divergence for Combining Variational Inference and MCMC 2019 Francisco J. R. Ruiz
Michalis K. Titsias
1
+ Fair Regression: Quantitative Definitions and Reduction-based Algorithms 2019 Alekh Agarwal
Miroslav DudĂ­k
Zhiwei Steven Wu
1
+ Deep Sets 2017 Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
BarnabĂĄs PĂłczos
Ruslan Salakhutdinov
Alexander J. Smola
1
+ Fair quantile regression 2019 Dana Yang
John Lafferty
David Pollard
1
+ Variational Inference via $\chi$ Upper Bound Minimization 2017 Adji B. Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
1
+ PDF Chat The sample size required in importance sampling 2018 Sourav Chatterjee
Persi Diaconis
1
+ Empirical Risk Minimization Under Fairness Constraints 2018 Michele Donini
Luca Oneto
Shai Ben-David
John Shawe‐Taylor
Massimiliano Pontil
1
+ Ranking with Fairness Constraints 2018 L. Elisa Celis
Damian Straszak
Nisheeth K. Vishnoi
1
+ Pruning Random Forests for Prediction on a Budget 2016 Nan Feng
Joseph Wang
Venkatesh Saligrama
1
+ Multiagent Evaluation under Incomplete Information 2019 Mark Rowland
Shayegan Omidshafiei
Karl Tuyls
Julien PĂ©rolat
Michal VaÄŸko
Georgios Piliouras
RĂ©mi Munos
1
+ Policy Learning for Fairness in Ranking 2019 Ashudeep Singh
Thorsten Joachims
1