Kaixin Gao

Follow

Generating author description...

All published works
Action Title Year Authors
+ Tensor Robust Principal Component Analysis via Tensor Fibered Rank and \({\boldsymbol{{l_p}}}\) Minimization 2023 Kaixin Gao
Zheng‐Hai Huang
+ Low rank tensor recovery by schatten capped p norm and plug-and-play regularization 2023 Lulu Guo
Kaixin Gao
Zheng‐Hai Huang
+ PDF Chat Eigenvalue-Corrected Natural Gradient Based on a New Approximation 2023 Kaixin Gao
Zheng‐Hai Huang
Xiaolei Liu
Min Wang
Shuangling Wang
Zidong Wang
Dachuan Xu
Fan Yu
+ PDF Chat Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation 2023 Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Kaixin Gao
Bing Han
Lin Zheng
Sheng Guo
Xiaobo Guo
+ Poincaré Heterogeneous Graph Neural Networks for Sequential Recommendation 2022 Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Kaixin Gao
Bing Han
Zheng Lin
Xiaobo Guo
+ PDF Chat A Trace-restricted Kronecker-Factored Approximation to Natural Gradient 2021 Kaixin Gao
Xiaolei Liu
Zheng‐Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
Fan Yu
+ HCGR: Hyperbolic Contrastive Graph Representation Learning for Session-based Recommendation 2021 Naicheng Guo
Xiaolei Liu
Shaoshuai Li
Qiongxu Ma
Yunan Zhao
Bing Han
Lin Zheng
Kaixin Gao
Xiaobo Guo
+ EAdam Optimizer: How $\epsilon$ Impact Adam 2020 Wei Yuan
Kaixin Gao
+ EAdam Optimizer: How $ε$ Impact Adam 2020 Wei Yuan
Kaixin Gao
+ A Trace-restricted Kronecker-Factored Approximation to Natural Gradient 2020 Kaixin Gao
Xiaolei Liu
Zheng‐Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
Fan Yu
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample. 2019 Albert S. Berahas
Majid Jahani
Martin Takáč
4
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
4
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ Noisy Natural Gradient as Variational Inference 2017 Guodong Zhang
Shengyang Sun
David Duvenaud
Roger Grosse
3
+ PDF Chat Large-Scale Distributed Second-Order Optimization Using Kronecker-Factored Approximate Curvature for Deep Convolutional Neural Networks 2019 Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Rio Yokota
Satoshi Matsuoka
3
+ Eigenvalue Corrected Noisy Natural Gradient 2018 Juhan Bae
Guodong Zhang
Roger Grosse
3
+ Three Mechanisms of Weight Decay Regularization 2018 Guodong Zhang
Chaoqi Wang
Bowen Xu
Roger Grosse
3
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
3
+ Practical Quasi-Newton Methods for Training Deep Neural Networks 2020 Donald Goldfarb
Yi Ren
Achraf Bahamou
3
+ Training Neural Networks with Stochastic Hessian-Free Optimization 2013 Ryan Kiros
3
+ PDF Chat Neural Attentive Session-based Recommendation 2017 Jing Li
Pengjie Ren
Zhumin Chen
Zhaochun Ren
Tao Lian
Jun Ma
2
+ Pathological spectra of the Fisher information metric and its variants in deep neural networks 2019 Ryo Karakida
Shotaro Akaho
Шун-ичи Амари
2
+ Tensor-Train Decomposition 2011 Ivan Oseledets
2
+ PDF Chat Self-Attentive Sequential Recommendation 2018 Wang-Cheng Kang
Julian McAuley
2
+ PDF Chat Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs 2021 Nurendra Choudhary
Nikhil Rao
Sumeet Katariya
Karthik Subbian
Chandan K. Reddy
2
+ PDF Chat Hierarchical organization in complex networks 2003 Erzsébet Ravasz Regan
Albert‐László Barabási
2
+ PDF Chat Geometric Deep Learning: Going beyond Euclidean data 2017 Michael M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
Pierre Vandergheynst
2
+ PDF Chat Training the random neural network using quasi-Newton methods 2000 Aristidis Likas
Andreas Stafylopatis
2
+ Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm 2019 Canyi Lu
Jiashi Feng
Yudong Chen
Wei Liu
Zhouchen Lin
Shuicheng Yan
2
+ On $l_q$ Optimization and Matrix Completion 2012 Goran Marjanovic
Victor Solo
2
+ PDF Chat adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs 2016 Nitish Shirish Keskar
Albert S. Berahas
2
+ PDF Chat ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning 2021 Zhewei Yao
Amir Gholami
Sheng Shen
Mustafa Mustafa
Kurt Keutzer
Michael W. Mahoney
2
+ PDF Chat Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation 2016 Ruining He
Julian McAuley
2
+ PDF Chat Session-Based Recommendation with Graph Neural Networks 2019 Shu Wu
Yuyuan Tang
Yanqiao Zhu
Liang Wang
Xing Xie
Tieniu Tan
2
+ Third-Order Tensors as Operators on Matrices: A Theoretical and Computational Framework with Applications in Imaging 2013 Misha E. Kilmer
Karen Braman
Ning Hao
Randy C. Hoover
2
+ PDF Chat Memory Augmented Graph Neural Networks for Sequential Recommendation 2020 Chen Ma
Liheng Ma
Yingxue Zhang
Jianing Sun
Xue Liu
Mark Coates
2
+ Convolutional Neural Network Training with Distributed K-FAC 2020 J. Gregory Pauloski
Zhao Zhang
Lei Huang
Weijia Xu
Ian Foster
2
+ A Corrected Tensor Nuclear Norm Minimization Method for Noisy Low-Rank Tensor Completion 2019 Xiongjun Zhang
Michael K. Ng
2
+ PDF Chat A well-conditioned estimator for large-dimensional covariance matrices 2003 Olivier Ledoit
Michael Wolf
2
+ Estimation of the Kronecker Covariance Model by Partial Means and Quadratic Form 2019 Oliver B. Linton
Haihan Tang
2
+ Factorization strategies for third-order tensors 2010 Misha E. Kilmer
Carla D. Martin
2
+ Tensor Decomposition for Signal Processing and Machine Learning 2017 Nicholas D. Sidiropoulos
Lieven De Lathauwer
Xiao Fu
Kejun Huang
Evangelos E. Papalexakis
Christos Faloutsos
2
+ Iterative p-shrinkage thresholding algorithm for low Tucker rank tensor recovery 2019 Kun Shang
Yufan Li
Zheng‐Hai Huang
2
+ Equivariant and Scale-Free Tucker Decomposition Models 2015 Peter D. Hoff
2
+ Multi-Manifold Learning for Large-scale Targeted Advertising System 2020 Kyuyong Shin
Youngjin Park
Kyung Min Kim
Sunyoung Kwon
2
+ PDF Chat Tensor Robust Principal Component Analysis via Non-Convex Low Rank Approximation 2019 Shuting Cai
Qilun Luo
Ming Yang
Wen Li
Mingqing Xiao
2
+ Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition 1970 J. Douglas Carroll
Jih-Jie Chang
2
+ Efficient Navigation in Scale-Free Networks Embedded in Hyperbolic Metric Spaces 2008 Dmitri Krioukov
Fragkiskos Papadopoulos
Marian Boguñá
Amin Vahdat
1
+ PDF Chat Learning with tensors: a framework based on convex optimization and spectral regularization 2013 Marco Signoretto
Quoc Tran Dinh
Lieven De Lathauwer
Johan A. K. Suykens
1
+ Optimizing Neural Networks with Kronecker-factored Approximate Curvature 2015 James Martens
Roger Grosse
1
+ PDF Chat Robust principal component analysis? 2011 Emmanuel J. Candès
Xiaodong Li
Yi Ma
John Wright
1
+ Proximal alternating linearized minimization for nonconvex and nonsmooth problems 2013 Jérôme Bolte
Shoham Sabach
Marc Teboulle
1
+ PDF Chat Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality 2010 Hédy Attouch
Jérôme Bolte
Patrick Redont
Antoine Soubeyran
1
+ PDF Chat High Dimensional Covariance Matrix Estimation in Approximate Factor Models 2011 Jianqing Fan
Yuan Liao
Martina Mincheva
1
+ PDF Chat Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization 2010 Benjamin Recht
Maryam Fazel
Pablo A. Parrilo
1
+ Fast Approximate Natural Gradient Descent in a Kronecker-factored Eigenbasis 2018 George Thomas
César Laurent
Xavier Bouthillier
Nicolas Ballas
Pascal Vincent
1
+ Hyperbolic Neural Networks 2018 Octavian-Eugen Ganea
Gary Bécigneul
Thomas Hofmann
1
+ PDF Chat A Singular Value Thresholding Algorithm for Matrix Completion 2010 Jian‐Feng Cai
Emmanuel J. Candès
Zuowei Shen
1
+ PDF Chat Tensor Completion Based on Triple Tubal Nuclear Norm 2018 Dongxu Wei
Andong Wang
Xiaoqin Feng
Boyu Wang
Bo Wang
1
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
1