Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Richa Sharma
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
A class of fruit Diophantine equations
2022
Lalit Vaishya
Richa Sharma
+
PDF
Chat
On the rational solutions of y^2 =x^3 + k^{6n+3}
2021
Richa Sharma
Sanjay Bhatter
+
PDF
Chat
On the solutions of certain Lebesgue–Ramanujan–Nagell equations
2021
Kalyan Chakraborty
Azizul Hoque
Richa Sharma
+
On the solutions of certain Lebesgue–Ramanujan–Nagell equations
2021
Kalyan Chakraborty
Azizul Hoque
Richa Sharma
+
PDF
Chat
Complete solutions of certain Lebesgue--Ramanujan--Nagell type equations
2020
Kalyan Chakraborty
Azizul Hoque
Richa Sharma
+
On Lebesgue–Ramanujan–Nagell Type Equations
2020
Richa Sharma
+
PDF
Chat
On the solutions of a Lebesgue–Nagell type equation
2019
Sanjay Bhatter
Azizul Hoque
Richa Sharma
+
Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations
2018
Kalyan Chakraborty
Azizul Hoque
Richa Sharma
+
On the solutions of a Lebesgue - Nagell type equation
2018
Sanjay Bhatter
Azizul Hoque
Richa Sharma
+
On the Diophantine equation $f(x)=2f(y)$
2018
Sanjay Bhatter
Richa Sharma
+
Divisibility of Class Numbers of Quadratic Fields: Qualitative Aspects
2018
Kalyan Chakraborty
Azizul Hoque
Richa Sharma
Common Coauthors
Coauthor
Papers Together
Azizul Hoque
7
Kalyan Chakraborty
5
Sanjay Bhatter
4
Lalit Vaishya
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Ternary Diophantine Equations via Galois Representations and Modular Forms
2004
Michael A. Bennett
Chris M. Skinner
4
+
PDF
Chat
On the divisibility of class numbers of quadratic fields and the solvability of diophantine equations
2016
Azizul Hoque
Helen K. Saikia
4
+
PDF
Chat
On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> − 1)<i>d</i>) = <i>by</i><sup><i>l</i></sup>
2004
Kálmán Győry
Lajos Hajdu
N. Saradha
4
+
Divisibility of the class numbers of imaginary quadratic fields
2017
Kalyan Chakraborty
Azizul Hoque
Yasuhiro Kishi
Prem Prakash Pandey
4
+
On the Diophantine Equation x2+q2k+1=yn
2002
Salmawaty Arif
Fadwa S. Abu Muriefah
4
+
PDF
Chat
On the solutions of a Lebesgue–Nagell type equation
2019
Sanjay Bhatter
Azizul Hoque
Richa Sharma
3
+
PDF
Chat
Existence of primitive divisors of Lucas and Lehmer numbers
2001
Yonatan Bilu
Guillaume Hanrot
Paul Voutier
3
+
On the diophantine equation x2 + p2k = yn
2008
Attila Bérczes
István Pink
3
+
PDF
Chat
Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation
2006
Yann Bugeaud
Maurice Mignotte
Samir Siksek
3
+
ON THE DIOPHANTINE EQUATION x<sup>2</sup> + C = 2y<sup>n</sup>
2009
Fadwa S. Abu Muriefah
Florian Luca
Samir Siksek
Szabolcs Tengely
3
+
Classical and modular approaches to exponential Diophantine equations
2016
Yann Bugeaud
Maurice Mignotte
Samir Siksek
3
+
PDF
Chat
On the diophantine equations <i>x</i><sup>2</sup> + 74 = <i>y</i><sup>5</sup> and <i>x</i><sup>2</sup> + 86 = <i>y</i><sup>5</sup>
1996
Maurice Mignotte
B.M.M. de Weger
3
+
Solutions of some generalized Ramanujan-Nagell equations
2006
N. Saradha
Anitha Srinivasan
3
+
On Cohn's conjecture concerning the diophantine equation¶ x 2 + 2 m = y n
2002
M. Le
3
+
PDF
Chat
On the Diophantine equation x<sup>2</sup>+q<sup>2m</sup>=2y<sup>p</sup>
2007
Sz. Tengely
3
+
On the Diophantine equation <i>x</i> <sup>2</sup> + <i>C</i>= <i>y<sup>n</sup> </i> for <i>C</i> = 2<sup> <i>a</i> </sup>3<sup> <i>b</i> </sup>17<sup> <i>c</i> </sup> and <i>C</i> = 2<sup> <i>a</i> </sup>13<sup> <i>b</i> </sup>17<sup> <i>c</i> </sup>
2016
Hemar Godinho
Diego Marques
Alain Togbé
2
+
PDF
Chat
On an diophantine equation
2000
Florian Luca
2
+
PDF
Chat
On a Diophantine Equation
1951
Péter L. Erdős
2
+
Divisibility of Class Numbers of Certain Families of Quadratic Fields
2017
Azizul Hoque
Kalyan Chakraborty
2
+
Rational Points on Elliptic Curves
1992
Joseph H. Silverman
John Tate
2
+
PDF
Chat
The diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 3^m = y^n$" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>3</mml:mn><mml:mi>m</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math>
1996
Salmawaty Arif
Fadwa S. Abu Muriefah
2
+
On the diophantine equation x 2 + 2 a · 19 b = y n
2012
Gökhan Soydan
Maciej Ulas
Hui Lin Zhu
2
+
PDF
Chat
On the diophantine equation x 2 + 2a · 3b · 11c = y n
2013
İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
2
+
On some generalized Lebesgue–Nagell equations
2010
Hui Lin Zhu
Mao Hua Le
2
+
Exponents of class groups of certain imaginary quadratic fields
2018
Azizul Hoque
Kalyan Chakraborty
2
+
On the number of solutions of the generalized Ramanujan-Nagell equation
2001
Yann Bugeaud
T. N. Shorey
2
+
PDF
Chat
ON THE DIOPHANTINE EQUATION<i>x</i><sup>2</sup>+<i>d</i><sup>2<i>l</i>+ 1</sup>=<i>y<sup>n</sup></i>
2012
Attila Bérczes
István Pink
2
+
On the Diophantine Equations d 1 x 2 + 2 2m d 2 = y n and d 1 x 2 + d 2 = 4y n
1993
LE Mao-hua
2
+
PDF
Chat
On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n $" id="E1"><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math>
1995
Salmawaty Arif
Fadwa S. Abu Muriefah
2
+
The Class-Number of Real Quadratic Number Fields
1952
N. C. Ankeny
Emil Artin
S. Chowla
2
+
On the diophantine equation x2 + D = 4pn
1992
LE Mao-hua
1
+
On generalized Mersenne Primes and class-numbers of equivalent quadratic fields and cyclotomic fields
2014
Azizul Hoque
Helen K. Saikia
1
+
PDF
Chat
On the number of real quadratic fields with class number divisible by 3
2002
Kalyan Chakraborty
M. Ram Murty
1
+
Parametrization of the Quadratic Fields Whose Class Numbers are Divisible by Three
2000
Yasuhiro Kishi
Katsuya Miyake
1
+
Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3
1974
P. Hartung
1
+
On Le's and Bugeaud's Papers about the Equation ax 2 + b 2m−1 = 4 c p
2002
Yuri Bilu
1
+
PDF
Chat
On the equation 𝑌²=𝑋(𝑋²+𝑝)
1984
Andrew Bremner
J. W. S. Cassels
1
+
PDF
Chat
On a diophantine equation
1998
Fadwa S. Abu Muriefah
Salmawaty Arif
1
+
On the number of solutions of the Diophantine equation
2003
Csaba Sándor
1
+
A Note on Diophantine Equation Y 2 + k = X 5
1976
Josef Blass
1
+
PDF
Chat
The Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math>, II
1999
J. H. E. Cohn
1
+
On the class number of certain imaginary quadratic fields
2001
J. D. Cohn
1
+
On the diophantine equationD 1 x 2+D 2 m =4y n
1995
LE Mao-hua
1
+
A Constructive Approach to Spiegelung Relations between 3-Ranks of Absolute Ideal Class Groups and Congruent Ones Modulo (3)2 in Quadratic Fields
2000
Yasuhiro Kishi
1
+
On the Diophantine equation x 2+5 m =y n
2009
Liqun Tao
1
+
Complete Solution of the Diophantine EquationX2+1=dY4and a Related Family of Quartic Thue Equations
1997
Chen Jian Hua
Paul Voutier
1
+
PDF
Chat
On the generalized Ramanujan-Nagell equation I
1981
Frits Beukers
1
+
PDF
Chat
NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS
2008
Yasuhiro Kishi
1
+
On Mordell's equation y2 − k = x3: An interesting case of Sierpiński
1970
R. J. Finkelstein
Hymie London
1
+
A Note on the Generalized Ramanujan-Nagell Equation
1995
M. Le
1