Richa Sharma

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Azizul Hoque 7
Kalyan Chakraborty 5
Sanjay Bhatter 4
Lalit Vaishya 1
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Ternary Diophantine Equations via Galois Representations and Modular Forms 2004 Michael A. Bennett
Chris M. Skinner
4
+ PDF Chat On the divisibility of class numbers of quadratic fields and the solvability of diophantine equations 2016 Azizul Hoque
Helen K. Saikia
4
+ PDF Chat On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> − 1)<i>d</i>) = <i>by</i><sup><i>l</i></sup> 2004 Kálmán Győry
Lajos Hajdu
N. Saradha
4
+ Divisibility of the class numbers of imaginary quadratic fields 2017 Kalyan Chakraborty
Azizul Hoque
Yasuhiro Kishi
Prem Prakash Pandey
4
+ On the Diophantine Equation x2+q2k+1=yn 2002 Salmawaty Arif
Fadwa S. Abu Muriefah
4
+ PDF Chat On the solutions of a Lebesgue–Nagell type equation 2019 Sanjay Bhatter
Azizul Hoque
Richa Sharma
3
+ PDF Chat Existence of primitive divisors of Lucas and Lehmer numbers 2001 Yonatan Bilu
Guillaume Hanrot
Paul Voutier
3
+ On the diophantine equation x2 + p2k = yn 2008 Attila Bérczes
István Pink
3
+ PDF Chat Classical and modular approaches to exponential Diophantine equations II. The Lebesgue–Nagell equation 2006 Yann Bugeaud
Maurice Mignotte
Samir Siksek
3
+ ON THE DIOPHANTINE EQUATION x<sup>2</sup> + C = 2y<sup>n</sup> 2009 Fadwa S. Abu Muriefah
Florian Luca
Samir Siksek
Szabolcs Tengely
3
+ Classical and modular approaches to exponential Diophantine equations 2016 Yann Bugeaud
Maurice Mignotte
Samir Siksek
3
+ PDF Chat On the diophantine equations <i>x</i><sup>2</sup> + 74 = <i>y</i><sup>5</sup> and <i>x</i><sup>2</sup> + 86 = <i>y</i><sup>5</sup> 1996 Maurice Mignotte
B.M.M. de Weger
3
+ Solutions of some generalized Ramanujan-Nagell equations 2006 N. Saradha
Anitha Srinivasan
3
+ On Cohn's conjecture concerning the diophantine equation¶ x 2 + 2 m = y n 2002 M. Le
3
+ PDF Chat On the Diophantine equation x<sup>2</sup>+q<sup>2m</sup>=2y<sup>p</sup> 2007 Sz. Tengely
3
+ On the Diophantine equation <i>x</i> <sup>2</sup> + <i>C</i>= <i>y<sup>n</sup> </i> for <i>C</i> = 2<sup> <i>a</i> </sup>3<sup> <i>b</i> </sup>17<sup> <i>c</i> </sup> and <i>C</i> = 2<sup> <i>a</i> </sup>13<sup> <i>b</i> </sup>17<sup> <i>c</i> </sup> 2016 Hemar Godinho
Diego Marques
Alain Togbé
2
+ PDF Chat On an diophantine equation 2000 Florian Luca
2
+ PDF Chat On a Diophantine Equation 1951 Péter L. Erdős
2
+ Divisibility of Class Numbers of Certain Families of Quadratic Fields 2017 Azizul Hoque
Kalyan Chakraborty
2
+ Rational Points on Elliptic Curves 1992 Joseph H. Silverman
John Tate
2
+ PDF Chat The diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 3^m = y^n$" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>3</mml:mn><mml:mi>m</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math> 1996 Salmawaty Arif
Fadwa S. Abu Muriefah
2
+ On the diophantine equation x 2 + 2 a · 19 b = y n 2012 Gökhan Soydan
Maciej Ulas
Hui Lin Zhu
2
+ PDF Chat On the diophantine equation x 2 + 2a · 3b · 11c = y n 2013 İsmail Naci Cangül
Musa Demi̇rci̇
İlker Inam
Florian Luca
Gökhan Soydan
2
+ On some generalized Lebesgue–Nagell equations 2010 Hui Lin Zhu
Mao Hua Le
2
+ Exponents of class groups of certain imaginary quadratic fields 2018 Azizul Hoque
Kalyan Chakraborty
2
+ On the number of solutions of the generalized Ramanujan-Nagell equation 2001 Yann Bugeaud
T. N. Shorey
2
+ PDF Chat ON THE DIOPHANTINE EQUATION<i>x</i><sup>2</sup>+<i>d</i><sup>2<i>l</i>+ 1</sup>=<i>y<sup>n</sup></i> 2012 Attila Bérczes
István Pink
2
+ On the Diophantine Equations d 1 x 2 + 2 2m d 2 = y n and d 1 x 2 + d 2 = 4y n 1993 LE Mao-hua
2
+ PDF Chat On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n $" id="E1"><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> 1995 Salmawaty Arif
Fadwa S. Abu Muriefah
2
+ The Class-Number of Real Quadratic Number Fields 1952 N. C. Ankeny
Emil Artin
S. Chowla
2
+ On the diophantine equation x2 + D = 4pn 1992 LE Mao-hua
1
+ On generalized Mersenne Primes and class-numbers of equivalent quadratic fields and cyclotomic fields 2014 Azizul Hoque
Helen K. Saikia
1
+ PDF Chat On the number of real quadratic fields with class number divisible by 3 2002 Kalyan Chakraborty
M. Ram Murty
1
+ Parametrization of the Quadratic Fields Whose Class Numbers are Divisible by Three 2000 Yasuhiro Kishi
Katsuya Miyake
1
+ Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3 1974 P. Hartung
1
+ On Le's and Bugeaud's Papers about the Equation ax 2 + b 2m−1 = 4 c p 2002 Yuri Bilu
1
+ PDF Chat On the equation 𝑌²=𝑋(𝑋²+𝑝) 1984 Andrew Bremner
J. W. S. Cassels
1
+ PDF Chat On a diophantine equation 1998 Fadwa S. Abu Muriefah
Salmawaty Arif
1
+ On the number of solutions of the Diophantine equation 2003 Csaba Sándor
1
+ A Note on Diophantine Equation Y 2 + k = X 5 1976 Josef Blass
1
+ PDF Chat The Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="$x^2 + 2^k = y^n" id="E1"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math>, II 1999 J. H. E. Cohn
1
+ On the class number of certain imaginary quadratic fields 2001 J. D. Cohn
1
+ On the diophantine equationD 1 x 2+D 2 m =4y n 1995 LE Mao-hua
1
+ A Constructive Approach to Spiegelung Relations between 3-Ranks of Absolute Ideal Class Groups and Congruent Ones Modulo (3)2 in Quadratic Fields 2000 Yasuhiro Kishi
1
+ On the Diophantine equation x 2+5 m =y n 2009 Liqun Tao
1
+ Complete Solution of the Diophantine EquationX2+1=dY4and a Related Family of Quartic Thue Equations 1997 Chen Jian Hua
Paul Voutier
1
+ PDF Chat On the generalized Ramanujan-Nagell equation I 1981 Frits Beukers
1
+ PDF Chat NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS 2008 Yasuhiro Kishi
1
+ On Mordell's equation y2 − k = x3: An interesting case of Sierpiński 1970 R. J. Finkelstein
Hymie London
1
+ A Note on the Generalized Ramanujan-Nagell Equation 1995 M. Le
1