Tianbao Yang

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Ranking and combining multiple predictors without labeled data 2014 Fabio Parisi
Francesco Strino
Boaz Nadler
Yuval Kluger
1
+ PDF Chat On representing chemical environments 2013 Albert P. Bartók
Risi Kondor
Gábor Cśanyi
1
+ PDF Chat Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons 2010 Albert P. Bartók
M. C. Payne
Risi Kondor
Gábor Cśanyi
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Molecular graph convolutions: moving beyond fingerprints 2016 Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
1
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
1
+ PDF Chat MoleculeNet: a benchmark for molecular machine learning 2017 Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
1
+ SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules 2017 Esben Jannik Bjerrum
1
+ Junction Tree Variational Autoencoder for Molecular Graph Generation 2018 Wengong Jin
Regina Barzilay
Tommi Jaakkola
1
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+ Gaussian Error Linear Units (GELUs) 2016 Dan Hendrycks
Kevin Gimpel
1
+ PDF Chat PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges 2019 Oliver T. Unke
Markus Meuwly
1
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Analyzing Learned Molecular Representations for Property Prediction 2019 Kevin Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
Hua Gao
Angel Guzmán-Pérez
Timothy Hopper
Brian P. Kelley
Miriam Mathea
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery 2019 Shion Honda
Shoi Shi
Hiroki R. Ueda
1
+ wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations 2020 Alexei Baevski
Henry Zhou
Abdelrahman Mohamed
Michael Auli
1
+ Stochastic Optimization of Area Under Precision-Recall Curve for Deep Learning with Provable Convergence. 2021 Qi Qi
Youzhi Luo
Xu Zhao
Shuiwang Ji
Tianbao Yang
1
+ Benchmarking Graph Neural Networks 2020 Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
Laurent Thomas
Yoshua Bengio
Xavier Bresson
1