Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Tianbao Yang
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Advanced graph and sequence neural networks for molecular property prediction and drug discovery
2022
Zhengyang Wang
Meng Liu
Youzhi Luo
Xu Zhao
Yaochen Xie
Limei Wang
Lei Cai
Qi Qi
Zhuoning Yuan
Tianbao Yang
Common Coauthors
Coauthor
Papers Together
Youzhi Luo
1
Shuiwang Ji
1
Lei Cai
1
Qi Qi
1
Xu Zhao
1
Meng Liu
1
Zhengyang Wang
1
Limei Wang
1
Zhuoning Yuan
1
Yaochen Xie
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Ranking and combining multiple predictors without labeled data
2014
Fabio Parisi
Francesco Strino
Boaz Nadler
Yuval Kluger
1
+
PDF
Chat
On representing chemical environments
2013
Albert P. Bartók
Risi Kondor
Gábor Cśanyi
1
+
PDF
Chat
Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
2010
Albert P. Bartók
M. C. Payne
Risi Kondor
Gábor Cśanyi
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
PDF
Chat
Molecular graph convolutions: moving beyond fingerprints
2016
Steven Kearnes
Kevin McCloskey
Marc Berndl
Vijay S. Pande
Patrick Riley
1
+
PDF
Chat
Quantum-chemical insights from deep tensor neural networks
2017
Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
1
+
PDF
Chat
MoleculeNet: a benchmark for molecular machine learning
2017
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
Caleb Geniesse
Aneesh Pappu
Karl Leswing
Vijay S. Pande
1
+
SMILES Enumeration as Data Augmentation for Neural Network Modeling of Molecules
2017
Esben Jannik Bjerrum
1
+
Junction Tree Variational Autoencoder for Molecular Graph Generation
2018
Wengong Jin
Regina Barzilay
Tommi Jaakkola
1
+
Relational inductive biases, deep learning, and graph networks
2018
Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+
Gaussian Error Linear Units (GELUs)
2016
Dan Hendrycks
Kevin Gimpel
1
+
PDF
Chat
PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges
2019
Oliver T. Unke
Markus Meuwly
1
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
1
+
Adam: A Method for Stochastic Optimization
2014
Diederik P. Kingma
Jimmy Ba
1
+
Analyzing Learned Molecular Representations for Property Prediction
2019
Kevin Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
Hua Gao
Angel Guzmán-Pérez
Timothy Hopper
Brian P. Kelley
Miriam Mathea
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
SMILES Transformer: Pre-trained Molecular Fingerprint for Low Data Drug Discovery
2019
Shion Honda
Shoi Shi
Hiroki R. Ueda
1
+
wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations
2020
Alexei Baevski
Henry Zhou
Abdelrahman Mohamed
Michael Auli
1
+
Stochastic Optimization of Area Under Precision-Recall Curve for Deep Learning with Provable Convergence.
2021
Qi Qi
Youzhi Luo
Xu Zhao
Shuiwang Ji
Tianbao Yang
1
+
Benchmarking Graph Neural Networks
2020
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
Laurent Thomas
Yoshua Bengio
Xavier Bresson
1